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Abstract We consider a class of single-stage, single-product Make-to-Stock production-
inventory system (MTS system) with backorders. The system employs a continuous-review
base-stock policy which strives to maintain a prescribed base-stock level of inventory. In a
previous paper of Zhao and Melamed (Methodology and Computing in Applied Probabil-
ity 8:191–222, 2006), the Infinitesimal Perturbation Analysis (IPA) derivatives of inventory
and backorders time averages with respect to the base-stock level and a parameter of the
production-rate process were computed in Stochastic Fluid Model (SFM) setting, where the
demand stream at the inventory facility and its replenishment stream from the production
facility are modeled by stochastic rate processes. The advantage of the SFM abstraction is
that the aforementioned IPA derivatives can be shown to be unbiased. However, its disad-
vantages are twofold: (1) on the modeling side, the highly abstracted SFM formulation does
not maintain the identity of transactions (individual demands, orders and replenishments)
and has no notion of lead times, and (2) on the applications side, the aforementioned IPA
derivatives are brittle in that they contain instantaneous rates at certain hitting times which
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are rarely known, and consequently, need to be estimated. In this paper, we remedy both dis-
advantages by using a discrete setting, where transaction identity is maintained, and order
fulfillment from inventory following demand arrivals and inventory restocking following re-
plenishment arrivals are modeled as discrete jumps in the inventory level. We then compute
the aforementioned IPA derivatives with respect to the base-stock level and a parameter of
the lead-time process in the discrete setting under any initial system state. The formulas de-
rived are shown to be unbiased and directly computable from sample path observables, and
their computation is both simple and computationally robust.

Keywords Infinitesimal perturbation analysis (IPA) · IPA derivatives · Make-To-Stock
production-inventory system (MTS system) · Discrete model

1 Introduction

We consider a class of single-stage, single-product Make-to-Stock (MTS) production-
inventory systems with backorders. An MTS system consists of a production facility coupled
to an inventory facility: the inventory facility is visited by a stream of demands and the pro-
duction facility replenishes the inventory facility. The system is driven by random demand
and possibly random production processes. We assume that the production facility has an un-
limited supply of raw material, so it never starves. The system employs a continuous-review
base-stock policy which strives to maintain a prescribed base-stock level, S, of inventory as
follows: while the inventory level is below S, replenishment is turned on, and otherwise, it
is turned off.

The general description above of an MTS system can be modeled using two related
paradigms, the Stochastic Fluid Model (SFM) paradigm and the discrete paradigm. These
paradigms will be briefly described next, and their relative merits and shortcomings will be
discussed later on.

In the discrete MTS model with backorders, the demand process consists of an inter-
arrival time process and a random demand size process. Demands arrive at the inventory
facility and are satisfied from inventory on hand (if available). When an inventory short-
fall is encountered, the arriving demand receives the entire inventory on hand (if any), and
the shortfall is backordered from the production facility; the demand then waits in a first-
come-first-serve (FCFS) buffer at the inventory facility until sufficient replenishment arrives.
A continuous-review base-stock policy governs the orders placed with the production facil-
ity, based on the prevailing inventory position (inventory on hand plus replenishments en
route minus backorders). Initially, the system’s inventory position is allowed to exceed S,
a situation referred to as overage. Similarly, when the inventory position lies strictly below S,
we refer to this situation as underage. When a demand arrival results in an underage, the in-
ventory facility immediately sends an order that raises the inventory position back to S;
thus, overage can only occur initially, but once the system encounters the first underage,
overage can never recur. Replenishments corresponding to previously placed orders arrive
at the inventory facility after a random lead time, which may include manufacturing time,
transportation time, etc. We make no assumptions on the processing order of replenishment
orders in the production facility. Both demand satisfaction (following demand arrival) and
inventory restocking (following replenishment arrival) are instantaneous. Consequently, the
inventory level and inventory position processes are piecewise constant with jumps occur-
ring when a demand arrives (downward jump) or replenishment arrives (upward jump). Such
jumps will be referred to as sample-path events. A schematic of the discrete MTS system is
depicted in Fig. 1.
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Fig. 1 A schematic of the discrete MTS system with backorders under the base stock policy

In contrast, an SFM counterpart is a highly abstracted model, which does not maintain
the identity of transactions (individual demands, orders and replenishments) and has no
notion of lead times. Rather, the flows of inventory into the inventory facility and out of it
are modeled as fluid-flow. More specifically, the stream of outgoing inventory is modeled
by a demand arrival-rate process that draws down on the inventory level, while the stream of
replenishment is modeled by a replenishment-rate process that restocks the inventory. The
rate processes are often assumed to be piecewise-constant, and consequently, the inventory
level and inventory position processes are piecewise linear. Backordering is captured by
allowing the inventory position to be negative, while the base-stock policy is implemented
by requiring that the replenishment rate does not lead to an overage following an underage.

The subject matter of this paper is Infinitesimal Perturbation Analysis (IPA) of MTS sys-
tems with backorders under the base-stock policy. IPA is a technique for obtaining sample
path derivatives of a random variable L(θ) with respect to some parameters of interest, θ;
see Fu and Hu (1997) and Cassandras and Lafortune (1999) for comprehensive discussions
of IPA derivatives and their applications. For IPA-based application to be statistically accu-
rate, it is necessary that the IPA derivative should be unbiased. Specifically, letting L(θ) be
a random variable, an IPA derivative is said to be unbiased if the expectation and differen-
tiation operators commute, i.e., E[ d

dθ
L(θ)] = d

dθ
E[L(θ)]; otherwise, it is said to be biased.

Sufficient conditions for unbiased IPA derivatives are given in the following result.

Fact 1 (See Rubinstein and Shapiro 1993, Lemma A2, p. 70) An IPA derivative d
dθ

L(θ) is
unbiased, if

(a) For each θ , the IPA derivatives d
dθ

L(θ) exist w.p.1 (with probability 1),
(b) W.p.1, L(θ) is Lipschitz continuous in �, and the (random) Lipschitz constants have

finite first moments.

IPA derivatives are nonparametric in the sense that they are computed from sample paths
without any knowledge of the underlying probability law. Consequently, they can be com-
puted from simulation runs or in real-life systems deployed in the field, and the values can
potentially be used in stochastic optimization. This property holds out the promise of utiliz-
ing IPA derivative formulas to provide sensitivity information on system metrics with respect
to control parameters of interest, and can serve as the theoretical underpinning for offline de-
sign algorithms and online control algorithms. However, when contemplating an appropriate
modeling paradigm, (discrete or SFM), the modeler is faced with a basic tradeoff. A discrete
model is a priori preferable, because it requires far less abstraction than its SFM counterpart.
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Moreover, experience shows that IPA derivatives in SFM setting can contain computation-
ally brittle terms in the form of instantaneous rates at certain hitting times, which are rarely
known, and consequently, need to be estimated (e.g., Theorems 1 and 2 in each of Zhao and
Melamed 2006, 2007). This is not the case in the discrete setting, since all quantities in the
associated IPA derivatives are directly observable from system sample paths. On the other
hand, IPA derivatives in discrete setting tend to be biased (Heidelberger et al. 1988), while
their SFM counterparts tend to be unbiased. Thus, provided the associated IPA derivatives
are unbiased, the modeler would generally prefer the discrete paradigm, and otherwise the
modeler would resort to the SFM paradigm (e.g., Wardi et al. 2002, Cassandras et al. 2002,
2003).

IPA in SFM setting has been previously applied to MTS systems. Paschalidis et al. (2004)
treats a tandem supply chain with MTS inventories at each stage and demand at the last stage,
subject to backordering. The paper seeks to optimize the overall inventory costs, and the so-
lution combines IPA with large deviations. Additionally, the relation between these theories
is elucidated. Panayiotou and Cassandras (2006) devises online algorithms to optimize in-
ventory capacities with respect to an objective function that balances inventory carrying and
stockout costs. This paper shows that the requisite IPA derivatives are unbiased and sim-
pler than their discrete counterparts (which are generally biased). The class of MTS systems
under the base-stock policy is treated in Zhao and Melamed (2006, 2007) in SFM setting,
where IPA derivatives are computed for the time averaged inventory level and time-averaged
backorder level with respect to the base-stock level, as well as a parameter of the produc-
tion rate process (the first paper addresses MTS systems with backorders, and the second
addresses MTS systems with lost sales). In both papers, the IPA derivatives are shown to
be unbiased, and their formulas turn out to be fairly simple. However, as mentioned above,
for some initial conditions, the corresponding IPA derivatives include terms that contain in-
stantaneous flow rates at certain hitting times (cf. Theorems 1 and 2 in each of Zhao and
Melamed 2006, 2007). Unfortunately, estimating unknown instantaneous rates at specific
time points in SFM setting is not straightforward.

The contribution of this paper to the subject is to exhibit a discrete model formulation
for MTS systems with backorders under the base-stock policy, such that the corresponding
IPA derivatives of the time averaged inventory level and backorder level with respect to the
base-stock level and a parameter of the lead-time process are derived and shown to be un-
biased. Thus, the current paper improves on Zhao and Melamed (2006) in two ways: (1) by
postulating a higher-fidelity model of the actual MTS system under study, and (2) by de-
veloping unbiased and computationally robust IPA formulas which are directly computable
from sample path observables, thereby obviating the need for rate estimation.

The main tool for computing the IPA derivatives is the generalized Leibniz integral rule
given below.

Fact 2 (See Lemma A.1 and Corollary A.1 in Fan et al. 2009) Let the function f (t, θ) be
defined in the rectangle [A,B]× [ϕ,ψ], and let ai(θ), 1 ≤ i ≤ n, be differentiable functions
on [ϕ,ψ], satisfying A ≤ a1(θ) ≤ a2(θ) ≤ · · · ≤ an(θ) ≤ B for every θ ∈ [ϕ,ψ]. For 1 ≤ i ≤
n − 1, let D1,i = {(t, θ) : θ ∈ [ϕ,ψ], t ∈ (ai(θ), ai+1(θ))} and D2,i = {(t, θ) : θ ∈ [ϕ,ψ], t ∈
[ai(θ), ai+1(θ)]}. Suppose that for each 1 ≤ i ≤ n − 1, f (t, θ) is continuous on D1,i with a
continuously differentiable partial derivative ∂

∂θ
f (t, θ) on D1,i . Suppose further that there

exist functions gi(t, θ), 1 ≤ i ≤ n − 1, such that

1. For each 1 ≤ i ≤ n − 1, gi(t, θ) is continuous on D2,i with a continuously differentiable
partial derivative ∂

∂θ
gi(t, θ) on D2,i .

2. For every θ ∈ [ϕ,ψ], f (t, θ) = gi(t, θ) on each interval (ai(θ), ai+1(θ)), 1 ≤ i ≤ n − 1.
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Then the function

F(θ) =
∫ an(θ)

a1(θ)

f (t, θ)dt

is differentiable on [ϕ,ψ], and its derivative is given by

d

dθ
F (θ) = d

dθ

∫ an(θ)

a1(θ)

f (t, θ)dt

=
∫ an(θ)

a1(θ)

∂

∂θ
f (t, θ)dt

+
n−1∑
i=1

[
f (ai+1(θ)−, θ)

d

dθ
ai+1(θ) − f (ai(θ)+, θ)

d

dθ
ai(θ)

]
. (1.1)

Throughout the paper, we use the following notational conventions and terminology.
N(x) denotes a neighborhood of x, where x may be vector valued. A function f (x) is
said to be locally differentiable at x if it is differentiable in a neighborhood of x; it is said to
be locally independent of x if it is constant in a neighborhood of x. The indicator function
of set A is denoted by 1A, x+ = max{x,0} and x− = −min{x,0}.

The rest of the paper is organized as follows. Section 2 presents the discrete MTS model.
Section 3 describes the performance metrics and parameters of interest. Section 4 obtains
IPA derivative formulas and shows them to be unbiased. Section 5 concludes the paper.

2 The discrete MTS model

Consider a discrete MTS system with backorders, under the base-stock policy, over a finite
time horizon [0, T ]. We assume that the system satisfies the following regularity assumption:

Assumption 1 Demand-arrival and product-replenishment sample-path events do not occur
simultaneously, almost surely. Consequently, no simultaneous jumps occur in the inventory
and backorder processes, w.p.1.

We distinguish between stochastic processes that specify the model (defining processes)
and those which are functions thereof (derived processes).

2.1 Defining processes

The defining processes of the discrete MTS system under study are listed below.

• {T A
i : i ≥ 1} is the demand arrival-time process, where T A

i is the arrival time of the i-th
demand. Note that this is also the time of placing the corresponding replenishment order.

• {Di : i ≥ 1} is the demand-size process, where Di is the quantity of the i-th demand.
• {Oi : i ≥ 1} is the order-size process, where Oi is the quantity of the i-th order placed

by the inventory facility. We assume that at time 0, there are N0 pending orders (N0 is
generally random). These pending orders, called the initial pending orders, are assumed
to have been placed prior to time 0, but have not yet arrived. The order-size process is
enumerated by order-placement time.
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• {T L
i : i ≥ 1} is the replenishment arrival-time process, where T L

i is the arrival time of the
i-th replenishment.

• {Vi : i ≥ 1} is the replenishment-size process, where Vi is the quantity of the i-th replen-
ishment. The replenishment-size process is enumerated by replenishment arrival time.

• {Li : i ≥ 1} is the replenishment lead-time process, where Li is the lead time of the i-th
replenishment. The lead time starts when an order is placed and ends when the corre-
sponding replenishment arrives. For initial pending orders, the lead times are the residual
lead times starting from time zero.

The processes {Di}, {Oi} and {Vi} are related. The relation between {Oi} and {Vi} is
given by

Oi = VCi
, (2.1)

where {Ci : i ≥ 1} is the random process that maps the index of the order (when it is placed)
to the index of the corresponding replenishment (when it arrives). Note that (2.1) admits
overtaking in replenishment relative to order placement. The relation between {Di} and
{Oi} will be exhibited in (2.9).

2.2 Derived processes

The following derived processes pertain to the discrete MTS system.

• {W(t) : t ≥ 0} is the extended inventory-level process (see Zhao and Melamed 2006,
2007), where W(t) is defined by

W(t) = W(0) −
∞∑
i=1

1{T A
i

≤t}Di +
∞∑

j=1

1{T L
j

≤t}Vj , (2.2)

and the initial extended inventory level, W(0), is a given random variable.
• {I (t) : t ≥ 0} is the inventory-level process, where I (t) is the volume of inventory on-hand

at time t , given by

I (t) = W(t)+ = W(t)1{W(t)≥0}. (2.3)

• {B(t) : t ≥ 0} is the backorder-level process, where B(t) is the volume of backorders at
time t , given by

B(t) = W(t)− = −W(t)1{W(t)≤0}. (2.4)

• {P (t) : t ≥ 0} is the inventory-position process, where P (t) is the amount of inventory
on-hand plus all pending replenishment sizes minus all outstanding backorder sizes at
time t .

• {P−(t) : t ≥ 0} is the inventory short-position process, where P−(t) is the inventory po-
sition at time t minus the order size placed at time t (if any). In particular, the initial
inventory short position is given by

P−(0) = W(0) +
N0∑
i=1

Oi. (2.5)
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Note that W(t) determines both I (t) and B(t) (and vice versa), since (2.3) and (2.4) imply
the relation

W(t) = I (t) − B(t) =
{

I (t), if B(t) = 0,

−B(t), if I (t) = 0.
(2.6)

2.3 Model construction

We make the following assumptions without loss of practical generality.

Assumption 2

(a) W.p.1, Oi(θ),Vi(θ),Di(θ) ≤ O∗, i ≥ 1, where O∗ is a positive deterministic constant
independent of θ ∈ � and i.

(b) W.p.1, the number of sample-path events is bounded by a deterministic constant K∗(T )

depending on T , but independent of θ ∈ �.

These assumptions state that order sizes (and consequently, replenishment sizes) cannot
be arbitrarily large, and as such capture common operational rules in actual supply chains.
We also assume that all demand sizes satisfy these bounds.

We next proceed to exhibit some relations and define auxiliary random variables. By
Assumptions 1 and 2, the order-size process {Oi} satisfies the following relationships:

• The first N0 orders are the initial pending orders, O1, . . . ,ON0 .
• For i = N0 + 1 (the first order placed at or after time 0),

ON0+1 =
{

S − P−(0), on {S − P−(0) > 0},
S − P−(T A

H ), otherwise,
(2.7)

where T A
H is the arrival time for the H -th demand, and the random index H is given by

H =
{

min{j ≥ 1 : S − P−(T A
j ) > 0}, if the minimum exists,

∞, otherwise.
(2.8)

Note that H may be strictly greater than 1, because the initial inventory position is allowed
to engender overage. However, if the initial position corresponds to an underage, then an
initial order is immediately placed at time 0.

• For i > N0 + 1, the relationship between {Oi} and {Di} after time T A
H , is given by

ON0+1+j = DH+j , j ≥ 1. (2.9)

Let [0, T ] be a finite time interval for some prescribed T . Suppressing the depen-
dence on ω and T , define the auxiliary random intervals (Qj (θ),Rj (θ)), j = 0,1, . . . , J (θ),
where J (θ) is the number of such intervals that have a non-empty intersection with [0, T ].
For j = 1, . . . , J (θ), let (Qj (θ),Rj (θ)) be the ordered extremal subintervals of [0, T ),
such that P (t, θ) = S > W(t, θ) for all t ∈ (Qj (θ),Rj (θ)), namely, the endpoints, Qj(θ)

and Rj(θ), are obtained via the inf and sup functions, respectively. For j = 0, we define
(Q0(θ),R0(θ)) = (0,Q1(θ)). Note that if W(0)<S, then Q0(θ) = R0(θ) = Q1(θ) = 0. By
conventi‘on, if any of these endpoints does not exist, then it is set to ∞. For any finite time
interval [0, T ), J (θ) < ∞ w.p.1 by part (b) of Assumption 2, and

Q1(θ) < R1(θ) < Q2(θ) < R2(θ) < · · · < QJ(θ)(θ) < RJ(θ)(θ) w.p.1. (2.10)
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Fig. 2 Sample path of a discrete MTS system

For j = 0,1, . . . , J (θ), let KL
j (θ) be the number of replenishments in the interval

(Qj (θ),Rj (θ)), and for each replenishment k = 1, . . . ,KL
j (θ) in the interval (Qj (θ),

Rj (θ)), let Lj,k(θ) be the k-th replenishment’s lead time, T L
j,k(θ) its arrival time, and Vj,k(θ)

its size. The enumerations of Lj,k and Li correspond to different indexing schemes of lead
times, such that if Li = Lj,k , then

i = i(j, k) =
j−1∑
m=0

KL
m(θ) + k. (2.11)

The indexing relationship of (2.11) also applies to the corresponding replenishment arrival
times (T L

i and T L
j,k) and replenishment sizes (Vi and Vj,k). Let KL(θ) = ∑J (θ)

j=0 KL
j (θ) be the

total number of replenishments in [0, T ], the last one being VKL(θ)(θ). In a similar vein, let
T A

j,k(θ), j = 0, . . . , J (θ), k = 1, . . . ,KA
j (θ), denote the arrival time of the k-th demand in the

interval [Qj(θ), Rj (θ)). Let KA(θ) = ∑J (θ)

j=0 KA
j (θ) be the total number of orders in [0, T ],

the last one being DKA(θ)(θ). A typical sample path of the discrete MTS is illustrated in
Fig. 2.

3 Performance metrics and parameters

Let [0, T ] be a finite time interval for some prescribed time T , and let θ ∈ � denote a generic
parameter of interest from a closed and bounded domain �. We shall be interested in the
following performance metrics:

• Inventory time average. The time average of the volume of inventory on-hand over the
interval [0, T ], given by

MI(T , θ) = 1

T

∫ T

0
I (t, θ)dt. (3.1)

We point out that this metric can be used to compute inventory holding costs over the
interval [0, T ], often computed as h

∫ T

0 I (t, θ)dt , where h is the inventory holding cost
coefficient per inventory item per unit time.
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• Backorder time average. The time average of the volume of backorders over the inter-
val [0, T ], given by

MB(T , θ) = 1

T

∫ T

0
B(t, θ)dt. (3.2)

We point out that this metric can be used to compute backorder penalties over the inter-
val [0, T ], similarly to the previous metric.

The IPA parameters of interest are:

• Base stock level parameter. The base stock level of inventory, S(θ) = θ .
• Lead time parameter. A parameter θ of the lead-time process, {Li(θ)}.

In this paper, the functional form of the lead time derivatives d
dθ

Li(θ) = L′
i (θ) is provided

by the modeler. Three typical choices are presented in (3.3), (3.4) and (3.6) in the next three
subsections: concurrent, sequential and inverse quadratic.

3.1 Concurrent lead time derivatives

A concurrent lead time derivative has the form

L′
i (θ) = 1, i = 1, . . . ,KL(θ). (3.3)

In this case, lead times are modeled as service times in an infinite server group, so that
multiple replenishments progress concurrently (in parallel). Consequently, all lead times are
varied linearly as function of θ . Note that in this case, replenishment completions do not
necessarily occur in the order that their corresponding orders were placed.

3.2 Sequential lead time derivatives

A sequential lead time derivative has the form

L′
j,k(θ) = 1{1}(j)1{KL

0 (θ)<N0}K
L
0 (θ) + k, j = 0, . . . , J (θ), k = 1, . . . ,KL

j (θ). (3.4)

In this case, lead times are modeled as sojourn times in a single-server FCFS queue as
follows:

• The lead time of an order consists of a waiting time in the queue (if any), Wi , plus a manu-
facturing time, Si , when the order reaches the head of the queue (there is no transportation
time).

• d
dθ

Si(θ) = 1, for all i ≥ 1, that is, the manufacturing times, Si(θ), are varied linearly as
function of θ .

To see that these assumptions imply (3.4), observe the following:

1. Over the intervals [0, T L

0,KL
0 (θ)

(θ)) and [Qj(θ),Rj (θ)], j = 1, . . . , J (θ), the production

queue is always busy.
2. Over the interval [T L

0,KL
0 (θ)

(θ),Q1(θ)], the production queue is busy on the event

{KL
0 (θ) < N0}, and empty on the event {KL

0 (θ) = N0}.
3. Over the intervals [Rj(θ),Qj (θ)], j = 1, . . . , J (θ), the production queue is empty.
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Next, let Ai be the interarrival time between orders i and i + 1 at the production queue
(it is also the interarrival time between demands at the inventory facility). Then by Lindley’s
Integral Equation (Kleinrock 1975, p. 276), W1(θ) = 0 is locally independent of θ , and while
the queue is busy,

Wi+1(θ) = Wi(θ) + Si(θ) − Ai+1, i > 1. (3.5)

Finally, differentiating the above equation and noting that d
dθ

Si(θ) = 1 by assumption,
yields (3.4) via a straightforward induction.

3.3 Inverse quadratic lead time derivatives

An inverse quadratic lead time derivative has the form

L′
i (θ) = −Vi

θ2
, i = 1, . . . ,KL(θ). (3.6)

As will be shown, this definition provides a bridge between the lead time and a correspond-
ing replenishment rate (it is often more convenient to design an MTS system in terms of
replenishment rates than lead times, as they often stand for production capacity). To this
end, note that if r(t, θ) is the instantaneous replenishment rate in an SFM, then the follow-
ing relation must hold

∫ T L
i

(θ)

T L
i

(θ)−Li (θ)

r(t, θ)dt = Vi. (3.7)

Next, define the imputed replenishment rate during the i-th lead time by

ri(θ) = Vi

Li(θ)
, i = 1, . . . ,KL(θ). (3.8)

To justify this definition, note that on substituting the ri(θ) for r(t, θ) in (3.7), that equation
holds trivially. Furthermore, the replenishment rate r(t, θ) is rarely known in practice, while
the imputed replenishment rates ri(θ) are always computable from observed data. Thus, the
ri(θ) can be used as proxies for the r(t, θ) over the i-th lead time. Finally, if we wish to vary
ri(θ) linearly in θ , that is, ri(θ) = θ , then (3.6) readily follows from (3.8) by differentiation.

4 IPA derivatives

To obtain the requisite derivatives, we shall analyze pairs of systems: the original dis-
crete MTS system (as function of θ) and a perturbed discrete MTS system (as function
of θ ± �θ), both starting from the same initial state. Our objective in this section is first to
derive formulas for the IPA derivatives and then to prove them unbiased.

4.1 IPA derivatives with respect to the base-stock level parameter

To obtain the IPA derivatives for MI(T , θ) and MB(T , θ) with respect to the base stock level
parameter, θ , we make the following assumptions.

Assumption 3

(a) S(θ) = θ , where θ ∈ �.
(b) The demand arrival-time process, {T A

i }, and the demand-size process, {Di}, are inde-
pendent of θ .



Ann Oper Res (2010) 181: 1–19 11

(c) The replenishment lead-time process {Li} is independent of θ .
(d) The initial random variables W(0),P−(0), and O1, . . . ,ON0 are independent of θ .
(e) As the order size tends to zero, so does the associated lead time.

Assumption (e) above is a technical condition designed to remove a practical difficulty
in the IPA derivative with respect to S. Specifically, suppose that the initial position is S

or an arriving demand lowers the inventory position from overage to exactly S. Then when
the base-stock level parameter is perturbed from a reference level S (in a reference MTS
system) to S + �S (in a perturbed MTS system), a new (infinitesimal) order of size �S and
associated lead time will be created in the perturbed system, which do not exist in the ref-
erence system. Since we observe only the reference MTS system, while its perturbed coun-
terparts are mathematical constructs without physical reality, there is no way to observe the
lead time associated with such a new order. Unfortunately, unless the new (unknown) lead
time is also infinitesimal, it would appear in the IPA derivative. Again, infinitesimal orders
are mathematical constructs that do not occur in reality. Assumption (e) above effectively
serves to remove such vanishingly small orders (along with their limiting lead times) from
consideration in a practically reasonable manner. Consequently, these infinitesimal random
variables can be excluded from consideration in the corresponding processes associated with
the reference MTS system. For additional discussion, refer to Sect. 5.

In this section we make use of the hitting time, TS(θ), defined by

TS(θ) =
{

min{t ∈ [0,Q1(θ)) : P (0) ≥ S,P (t, θ) = S(θ)}, if the minimum exists,
∞, otherwise.

(4.1)

Thus, TS(θ), when it exists, is the first time prior to Q1(θ) that the inventory position process
reaches the base stock level from above.

Proposition 1 W.p.1,

(a) KA, {T L
i } and KL are independent of θ .

(b) {Oi} is independent of θ except for ON0+1(θ) (placed either at time 0 or at time T A
H ).

Furthermore,

d

dθ− ON0+1(θ) = 1, (4.2)

d

dθ+ ON0+1(θ) =
{

0, on {TS(θ) < ∞},
1, on {TS(θ) = ∞}. (4.3)

(c) {Vi} is independent of θ except for VCN0+1(θ). Furthermore,

d

dθ− VCN0+1(θ) = 1, (4.4)

d

dθ+ VCN0+1(θ) =
{

0, on {TS(θ) < ∞},
1, on {TS(θ) = ∞}. (4.5)

Proof Part (a) follows immediately from parts (b) and (c) of Assumption 3 and the relation
T L

i = T A
i + Li .

To prove part (b), note that {Oi} is independent of θ except for ON0+1(θ), because the
first N0 orders, O1, . . . ,ON0 , are independent of θ by part (d) of Assumption 3, while the
orders Oi , i > N0 + 1, are independent of θ by (2.9) and part (b) of Assumption 3. We
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next consider the order ON0+1(θ). In the perturbed MTS system corresponding to θ + �θ ,
we have ON0+1(θ + �θ) = DH on the event {TS(θ) < ∞}, since the inventory position
will immediately increase from θ to θ + �θ at TS(θ) by part (e) of Assumption 3. This
implies the first case of (4.3) since {Di} is independent of θ by part (b) of Assumption 3.
Next, observe that P−(0) is independent of θ by part (d) of Assumption 3, while P−(T A

H ) =
P−(0) − ∑H

i=1 Di + ∑KL

j=1 1{T L
j

≤T A
H

}Vj is independent of θ because the right-hand side is

independent of θ by part (b) of Assumption 3 and part (a) above, and noting that {Vi} is
independent of θ on the events {T L

j ≤ T A
H } by part (d) of Assumption 3. Equation (4.2) and

the second case of (4.3) now follow from (2.7) and (2.8).
Finally, part (c) is implied by part (b) above and (2.1). �

Lemma 1 Consider a discrete MTS system with backorders under the base-stock policy,
subject to Assumptions 1, 2 and 3. Then for any θ ∈ �, 0 < T < ∞, t ∈ [0, T ],
(a) On the event A(θ) = {TS(θ) = ∞} ∩ {0 < t < T L

CN0+1
(θ)},

∂

∂θ
I (t, θ) = 0, (4.6)

∂

∂θ
B(t, θ) = 0. (4.7)

(b) On the event B(θ) = {TS(θ) = ∞} ∩ {t > T L
CN0+1

(θ)} ∩ {I (t, θ) > 0},

∂

∂θ
I (t, θ) = 1, (4.8)

∂

∂θ
B(t, θ) = 0. (4.9)

(c) On the event C(θ) = {TS(θ) = ∞} ∩ {t > T L
CN0+1

(θ)} ∩ {B(t, θ) > 0},

∂

∂θ
I (t, θ) = 0, (4.10)

∂

∂θ
B(t, θ) = −1. (4.11)

(d) On the event D(θ) = {TS(θ) = ∞} ∩ {t > T L
CN0+1

(θ)} ∩ {I (t, θ) = B(t, θ) = 0},

∂

∂θ+ I (t, θ) = 1, (4.12)

∂

∂θ+ B(t, θ) = 0, (4.13)

and

∂

∂θ− I (t, θ) = 0, (4.14)

∂

∂θ− B(t, θ) = −1. (4.15)
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(e) On the event E(θ) = {TS(θ) < ∞} ∩ {0 < t < TS(θ)},
∂

∂θ
I (t, θ) = 0, (4.16)

∂

∂θ
B(t, θ) = 0. (4.17)

(f) On the event F(θ) = {TS(θ) < ∞} ∩ {t > TS(θ)} ∩ {B(t, θ) = 0},
∂

∂θ+ I (t, θ) = 1, (4.18)

∂

∂θ+ B(t, θ) = 0. (4.19)

(g) On the event G(θ) = {TS(θ) < ∞} ∩ {t > TS(θ)} ∩ {B(t, θ) > 0},
∂

∂θ+ I (t, θ) = 0, (4.20)

∂

∂θ+ B(t, θ) = −1. (4.21)

(h) On the event H(θ) = {TS(θ) < ∞} ∩ {TS(θ) < t < T L
CN0+1

(θ)},

∂

∂θ− I (t, θ) = 0, (4.22)

∂

∂θ− B(t, θ) = 0. (4.23)

(i) On the event I (θ) = {TS(θ) < ∞} ∩ {t > T L
CN0+1

(θ)} ∩ {I (t, θ) > 0},

∂

∂θ− I (t, θ) = 1, (4.24)

∂

∂θ− B(t, θ) = 0. (4.25)

(j) On the event J (θ) = {TS(θ) < ∞} ∩ {t > T L
CN0+1

(θ)} ∩ {I (t, θ) = 0},

∂

∂θ− I (t, θ) = 0, (4.26)

∂

∂θ− B(t, θ) = −1. (4.27)

Proof To prove part (a), note that on {0 < t < T L
CN0+1

(θ)},

W(t, θ) = W(0) −
KA∑
i=1

1{T A
i

≤t}Di +
KL∑
j=1

1{T L
j

≤t}Vj . (4.28)

It follows that W(t, θ) is independent of θ on A(θ), because {T A
i }, {Di} are independent of

θ by part (b) of Assumption 3 and W(0) is independent of θ by part (d) of Assumption 3,
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while {T L
i } is independent of θ by part (a) of Proposition 1, and {Vi} is independent of θ on

{0 < t < T L
CN0+1

(θ)} by part (c) of Proposition 1. By (2.6), both I (t, θ) and B(t, θ) are also
independent of θ on A(θ), implying (4.6) and (4.7).

To prove parts (b), (c) and (d), note that on {t > T L
CN0+1

(θ)},

W(t, θ) = W(T L
CN0+1

(θ), θ) −
KA∑
i=1

1{T L
CN0+1

(θ)<T A
i

≤t}Di +
KL∑
j=1

1{T L
CN0+1

(θ)<T L
j

≤t}Vj , (4.29)

where W(T L
CN0+1

(θ), θ) = W(T L
CN0+1

(θ)−, θ) + VCN0+1(θ). Differentiating the previous

equation on B(θ),C(θ) and D(θ) yields

d

dθ
W(T L

CN0+1
(θ), θ) = 1, (4.30)

because W(T L
CN0+1

(θ)−, θ) is independent of θ by the proof of part (a), and d
dθ

VCN0+1(θ) = 1
by (4.4) and (4.5). Differentiating (4.29) with respect to θ with the aid of (4.30) we conclude
that ∂

∂θ
W(t, θ) = 1 on B(θ),C(θ) and D(θ), because {T A

i } and {Di}, are independent of θ

by part (b) of Assumption 3, while {T L
i } is independent of θ by part (a) of Proposition 1, and

{Vi} is independent of θ on {t > T L
CN0+1

(θ)} by part (c) of Proposition 1. Parts (b), (c) and (d)
then follow from (2.6). Note that the right and left derivatives differ on the event D(θ), since
an increase in θ changes the inventory level from 0 to a positive value, while the backorder
level remains 0, and a decrease in θ changes the backorder level from 0 to a positive value,
while the inventory level remains 0.

To prove part (e), note that (4.28) holds on E(θ), and the rest of the proof of this part is
similar to that of part (a).

To prove parts (f), and (g), note that on {t > TS(θ)}

W(t, θ) = W(TS(θ), θ) −
KA∑
i=1

1{TS(θ)<T A
i

≤t}Di +
KL∑
j=1

1{TS(θ)<T L
j

≤t}Vj , (4.31)

where on {TS(θ) < ∞}, we have

W(TS(θ), θ) = P (TS(θ), θ) −
N0∑
i=1

Oi +
KL∑
j=1

1{T L
j

<TS(θ)}Vj . (4.32)

Differentiating (4.32) on F(θ) and G(θ) yields

d

dθ
W(TS(θ), θ) = 1, (4.33)

because P (TS(θ), θ) = S(θ) = θ by definition, O1, . . . ,ON0 are independent of θ by part (d)
of Assumption 3, while {T L

i } is independent of θ by part (a) of Proposition 1 and {Vi} is
independent of θ on {t < TS(θ)} by part (c) of Proposition 1. Differentiating (4.31) with
respect to θ with the aid of (4.33), we conclude that ∂

∂θ
W(t, θ) = 1 on F(θ) and G(θ). The

rest of the proof of this part is similar to that of parts (b), (c) and (d).
To prove part (h), note that (4.28) holds on H(θ). The rest of the proof of this part is

similar to that of part (a).
To prove parts (i) and (j), note that (4.29) holds on I (θ) and J (θ). The rest of the proof

of this part is similar to that of parts (b), (c) and (d). �
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Theorem 1 Consider a discrete MTS system with backorders under the base-stock policy,
subject to Assumptions 1, 2 and 3. Then for any θ ∈ �, 0 < T < ∞, the IPA derivatives of
the inventory time average and the backorder time average with respect to the base stock
level parameter are given by

∂

∂θ− MI(T , θ) = 1{T L
CN0+1

(θ)<T }
1

T

∫ T

T L
CN0+1

(θ)

1{I (t,θ)>0}dt, (4.34)

∂

∂θ+ MI(T , θ) = 1{TS(θ)<T }
1

T

∫ min{T L
CN0+1

(θ),T }

TS

1{B(t,θ)=0}dt

+ 1{T L
CN0+1

(θ)<T }
1

T

∫ T

T L
CN0+1

(θ)

1{B(t,θ)=0}dt, (4.35)

and

∂

∂θ− MB(T , θ) = −1{T L
CN0+1

(θ)<T }
1

T

∫ T

T L
CN0+1

(θ)

1{I (t,θ)=0}dt, (4.36)

∂

∂θ+ MB(T , θ) = −1{TS(θ)<T }
1

T

∫ min{T L
CN0+1

(θ),T }

TS

1{B(t,θ)>0}dt

− 1{T L
CN0+1

(θ)<T }
1

T

∫ T

T L
CN0+1

(θ)

1{B(t,θ)>0}dt. (4.37)

Furthermore, the IPA derivatives are unbiased for each finite T > 0 and every θ ∈ �.

Proof Applying the Leibniz integral rule to (3.1) and (3.2) yields

∂

∂θ
MI (T , θ) = 1

T

d

dθ

∫ T

0
I (t, θ)dt = 1

T

∫ T

0

∂

∂θ
I (t, θ)dt, (4.38)

∂

∂θ
MB(T , θ) = 1

T

d

dθ

∫ T

0
B(t, θ)dt = 1

T

∫ T

0

∂

∂θ
B(t, θ)dt. (4.39)

To see that, note that the end-points of the interval [0, T ] do not depend on θ and the hitting
times, {T A

i } and {T L
i }, are independent of θ by part (b) of Assumption 3 and part (a) of

Proposition 1, respectively, so (4.38) and (4.39) follow readily from Fact 2. Equations (4.34),
(4.35), (4.36) and (4.37) now follow by substituting the derivatives computed in Lemma 1
into (4.38) and (4.39).

We next prove that the IPA derivatives are unbiased using Fact 1. The proofs of (4.34),
(4.35), (4.36) and (4.37) establish that Condition (a) of Fact 1 is satisfied for the sided
derivatives of MI(T , θ) and MB(T , θ) for each finite T > 0. Next, note that (4.34), (4.35),
(4.36) and (4.37) are each bounded uniformly by 1 in T and θ w.p.1. Since any differentiable
function with such a bounded derivative is Lipschitz continuous and its Lipschitz constant
trivially has a finite first moment, Condition (b) of Fact 1 holds, thereby completing the
proof. �
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4.2 IPA derivatives with respect to a lead time parameter

In this section we derive the IPA derivatives for MI(T , θ) and MB(T , θ) with respect to a
lead time parameter, θ . We make the following assumptions.

Assumption 4

(a) The derivatives d
dθ

Li(θ) = L′
i (θ), i = 1, . . . ,KL(θ), θ ∈ �, are given.

(b) W.p.1, |L′
i (θ)| ≤ L′, where L′ is a positive deterministic constant, independent of θ ∈ �

and i ≥ 1.
(c) The base stock level, S, the demand arrival-time process {T A

i }, and the demand-size
process {Di} are all independent of θ .

(d) The initial random variables W(0),P−(0), and O1, . . . ,ON0 are independent of θ.

Observation 1

(a) By parts (c) and (d) of Assumption 4, the order-size process {Oi} and the replenishment-
size process {Vi} are independent of θ .

(b) W.p.1, KL(θ) is locally independent of θ .
(c) By part (c) of Assumption 4 and the relation T L

i (θ) = T A
i + Li(θ), we have

d

dθ
T L

i (θ) = d

dθ
Li(θ) = L′

i (θ). (4.40)

Lemma 2 Consider a discrete MTS system with backorders under the base-stock policy,
subject to Assumptions 1, 2 and 4. Then for any θ ∈ �,0 < T < ∞, and almost every
t ∈ [0, T ], one has w.p.1,

∂

∂θ
I (t, θ) = ∂

∂θ
B(t, θ) = 0. (4.41)

Proof Let {	n(θ) : 0 ≤ n ≤ KA + KL(θ) + 2} be an increasing sequence of hitting times,
where 	0 = 0, 	KA+KL(θ)+2 = T , and for 0 < n < KA + KL(θ) + 2, 	n(θ) is of the form
T A

i or T L
j (θ). Next, write

W(t, θ) = W(0) −
KA∑
i=1

1{0<T A
i

<t}Di +
KL(θ)∑
j=1

1{0<T L
j

(θ)<t}Vj , t ∈ [0, T ]. (4.42)

Equation (4.42) implies that {W(t, θ)} is locally independent of θ over all open time inter-
vals of the form (	n(θ),	n+1(θ)). Furthermore, the same holds for {I (t, θ)} and {B(t, θ)},
since (2.6) implies that I (t, θ) = W+(t, θ) and B(t, θ) = W−(t, θ). This completes the
proof of the lemma. �

Theorem 2 Consider a discrete MTS system with backorders under the base-stock policy,
subject to Assumptions 1, 2 and 4. Then for any θ ∈ �, 0 < T < ∞, the IPA derivatives
of the inventory time average and the backorder time average with respect to a lead time
parameter are given by

∂

∂θ
MI (T , θ) = − 1

T

KL(θ)∑
i=1

min{Vi, I (T L
i (θ), θ)}L′

i (θ), (4.43)
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∂

∂θ
MB(T , θ) = 1

T

KL(θ)∑
i=1

max{0,Vi − I (T L
i (θ), θ)}L′

i (θ). (4.44)

Furthermore, the IPA derivatives are unbiased for each finite T > 0 and every θ ∈ �.

Proof To prove (4.43) and (4.44), we use Fact 2 in conjunction with (4.40)–(4.42) to deduce

∂

∂θ

∫ T

0
W(t, θ)dt =

KL(θ)∑
i=1

[
W(T L

i (θ)−, θ)
d

dθ
T L

i (θ) − W(T L
i (θ)+, θ)

d

dθ
T L

i (θ)

]

=
KL(θ)∑
i=1

[−ViL
′
i (θ)]. (4.45)

Next by (2.6), we have

d

dθ

∫ T

0
I (t, θ)dt = −

KL(θ)∑
i=1

min{Vi, I (T L
i (θ), θ)}L′

i (θ), (4.46)

d

dθ

∫ T

0
B(t, θ)dt =

KL(θ)∑
i=1

max{0,Vi − I (T L
i (θ), θ)}L′

i (θ). (4.47)

Equations (4.43) and (4.44) now follow from (3.1) and (3.2).
We next prove that the IPA derivatives are unbiased using Fact 1. The proofs of (4.43)

and (4.44) establish that Condition (a) of Fact 1 is satisfied for both MI(T , θ) and MB(T , θ)

for each finite T > 0 and every θ ∈ �. It remains to show that these equations are uniformly
bounded w.p.1. By part (b) of Assumption 2, KL(θ) ≤ K∗(T ) holds w.p.1 for each finite
T > 0, and every θ ∈ �. Applying this bound in conjunction with the bounds Vi ≤ O∗ from
part (a) of Assumption 2 and |L′

i (θ)| ≤ L′ from part (b) of Assumption 4 to (4.43) and (4.44),
we obtain w.p.1,

∣∣∣∣ ∂

∂θ
MI (T , θ)

∣∣∣∣,
∣∣∣∣ ∂

∂θ
MI (T , θ)

∣∣∣∣ ≤ O∗L′K∗(T )

T
< ∞,

where the right-hand side is independent of θ w.p.1, for each finite T > 0. Since any differ-
entiable function with such a bounded derivative is Lipschitz continuous and its Lipschitz
constant trivially has a finite first moment, it follows that Condition (b) of Fact 1 holds for
both MI(T , θ) and MB(T , θ), thereby completing the proof. �

Recall that the derivatives L′
i (θ) are provided as input parameters at the modeler’s dis-

cretion. We next consider three special cases of particular interest (see Sects. 3.1–3.3).
Case 1: For concurrent lead times (see Sect. 3.1), the IPA derivatives in (4.43) and (4.44)

become, in view of (3.3),

∂

∂θ
MI (T , θ) = − 1

T

KL(θ)∑
i=1

min{Vi, I (T L
i (θ), θ)} (4.48)
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and

∂

∂θ
MB(T , θ) = 1

T

KL(θ)∑
i=1

max{0,Vi − I (T L
i (θ), θ)}. (4.49)

Case 2: For sequential lead times (see Sect. 3.2), the IPA derivatives in (4.43) and (4.44)
become, in view of (3.4),

∂

∂θ
MI (T , θ) = − 1

T

J(θ)∑
j=0

KL
j

(θ)∑
k=1

min{Vj,k, I (T L
j,k(θ), θ)}[1{1}(j)1{KL

0 (θ)<N0}K
L
0 (θ)+k] (4.50)

and

∂

∂θ
MB(T , θ) = 1

T

J(θ)∑
j=0

KL
j

(θ)∑
k=1

max{0,Vj,k − I (T L
j,k(θ), θ)}[1{1}(j)1{KL

0 (θ)<N0}K
L
0 (θ) + k].

(4.51)
Case 3: For inverse quadratic lead times (see Sect. 3.3), the IPA derivatives in (4.43)

and (4.44) become, in view of (3.6),

∂

∂θ
MI (T , θ) = 1

T

KL(θ)∑
k=1

min{Vi, I (T L
i (θ), θ)}Vi

θ2
(4.52)

and

∂

∂θ
MB(T , θ) = − 1

T

KL(θ)∑
i=1

max{0,Vi − I (T L
i (θ), θ)}Vi

θ2
. (4.53)

5 Conclusion

This paper treats a discrete model of an MTS system under the continuous-review base-
stock policy. It derives the IPA derivatives formulas of time average of inventory on hand
and time average of backorders with respect to the base-stock level and a lead-time process
parameter under any initial inventory state. Furthermore, the IPA derivatives are shown to
be unbiased and easily computable.

In addition to deriving the aforementioned IPA derivatives, the paper discusses the ad-
vantages and shortcomings that are traded off when selecting a discrete model or an SFM
counterpart. The choice of a discrete model or SFM for an MTS system is motivated by a
fundamental tradeoff, stemming from the tendency of IPA derivatives to have singularities
(and bias) in discrete models, while their SFM counterparts often require the estimation of
unknown instantaneous rates at specific times. Rate estimation renders the corresponding
IPA formulas in SFM versions computationally brittle, whereas their discrete-model coun-
terparts are readily computable from sample path observables. The general recommendation
is to use a discrete model to the extent possible (that is, provided the model has IPA or sided
IPA derivatives that are unbiased), since those have readily computable IPA derivatives and
do not require the estimation of specific instantaneous rates.
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Finally, part (e) in Assumption 3 is an essential technical condition that cannot be re-
placed by more realistic assumptions without introducing singularities into some IPA deriv-
atives. As a case in point, consider replacing part (e) above by imposing instead a minimal
order size, o∗, in which case an order Oi(θ) is placed only when Oi(θ) ≥ o∗. However,
the minimal-order assumption introduces a singularity into the resultant IPA derivatives
with respect to the base-stock level, S, on an event of possibly positive probability (those
with respect to a lead time parameter do not change). To see that, note that on the events
{S − P−(0) = o∗} or {S − P−(T A

H ) = o∗} (to be referred to as singularity events), perturbing
S to S − �S, would eliminate an order from the order stream at time 0 or T A

H with the next
order picking up the slack. Since this is the case for all sufficiently small �S > 0, the finite
differences of the time-average metrics under study diverge as �S ↓ 0. This phenomenon is
due to the fact that the minimum-order policy is inherently “discontinuous” in S, and the re-
sulting singularities are irremovable. For the details of the attendant IPA derivative formulas
(which on non-singularity events are similar to the ones developed in this paper), see Fan
(2008).
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