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Abstract

A stochastic fluid model (SFM) is a queueing model in which workload flow is modeled as fluid
flow. More specifically, the traditional discrete arrival, service and departure stochastic processes
are replaced by corresponding stochastic fluid-flow rate processes in an SFM. This paper applies
the SFM paradigm to a class of single-stage, single-product Make-to-Stock (MTS) production-
inventory systems with stochastic demand and random production capacity, where the finished-
goods inventory is controlled by a continuous-time base-stock policy and unsatisfied demand is
lost. The paper derives formulas for IPA (Infinitesimal Perturbation Analysis) derivatives of the
sample-path time averages of the inventory level and lost sales with respect to the base-stock level
and a parameter of the production rate process. These formulas are comprehensive in that they
are exhibited for any initial inventory state, and include right and left derivatives (when they
differ). The formulas are obtained via sample path analysis under very mild assumptions, and
are inherently nonparametric in the sense that no specific probability law need be postulated.
It is further shown that all IPA derivatives under study are unbiased and very fast to compute,
thereby providing the theoretical basis for on-line adaptive control of MTS production-inventory
systems.

Keywords and Phrases: Infinitesimal Perturbation Analysis, IPA, IPA derivatives, IPA
gradients, Lost Sales, Make-to-Stock, production-inventory systems, stochastic fluid models,
SFM.



1 Introduction

Production-inventory systems consist of production facilities that feed replenishment product to
inventory facilities, driven by random demand and possibly random production processes, as well as
feedback information from inventory to production facilities. An important instance of production-
inventory systems is the Make-to-Stock (MTS) class, where the inventory facility sends its state
information to the production facility as a control signal, which modulates production with the aim
of maintaining the inventory level at a prescribed level, called base-stock level. Such systems can
admit backorders when stock is depleted, or suffer lost sales. This paper treats MTS systems with
lost sales (see Section 2), and is a sequel to Zhao and Melamed (2005), which treats MTS systems
with backorders.

Economic considerations in supply chains call for effective control of inventory levels and pro-
duction rates, in order to optimize some prescribed performance metrics. In many real world
applications, the underlying demand and production processes may be subject to time varying
probability laws. This motivates on-line algorithms that can adaptively control such systems over
time with the objective of minimizing inventory on-hand without compromising customer service
metrics. To this end, we propose to use IPA (Infinitesimal Perturbation Analysis) derivatives of
selected random variables [for comprehensive discussions of IPA derivatives and their applications,
refer to Glasserman (1991), Ho and Cao (1991) and Fu (1994a, 1994b)]. IPA derivatives provide
sensitivity information on system metrics with respect to control parameters of interest, and as
such can serve as the theoretical underpinnings for on-line control algorithms. Specifically, let L(θ)
be a random variable, parameterized by a generic real-valued parameter θ chosen from a closed
and bounded set Θ. The IPA derivative (gradient) of L(θ) with respect to θ is the random variable

L
′
(θ) =

d

dθ
L(θ), provided that it exists almost surely. Furthermore, L

′
(θ) is said to be unbiased,

if the expectation and differentiation operators commute, namely, E[
d

dθ
L(θ)] =

d

dθ
E[L(θ)]; other-

wise, it is said to be biased. Sufficient conditions for unbiased IPA derivatives are given in the
following lemma

Fact 1 (see Rubinstein and Shapiro (1993), Lemma A2, p. 70)

An IPA derivative L′(θ) is unbiased, if

(a) For each θ ∈ Θ, the IPA derivatives L′(θ) exist w.p.1 (with probability 1).

(b) W.p.1, L(θ) is Lipschitz continuous in Θ, and the (random) Lipschitz constants have finite
first moments. �

Comprehensive discussions of IPA derivatives and their applications can be found in Glasserman
(1991), Ho and Cao (1991) and Fu (1994).

Most papers on production-inventory systems (and MTS systems in particular) postulate spe-
cific probability laws that govern the underlying stochastic processes (e.g., Poisson demand arrivals
and exponential service times). For simple systems, such as the one-stage MTS variety, closed-form
formulas of key performance metrics (e.g., statistics of inventory levels and lost sales or backorders)
have been derived as functions of control parameters. For example, Zipkin (1986) and Karmarkar
(1987) obtain the optimal control of these systems with respect to batch sizes and re-order points by
standard optimization techniques. For more complex MTS systems, such as the multi-stage serial
variety, closed-form formulas are not available. A sample path analysis is carried out by Buza-
cott, Price and Shanthikumar (1991) for a 2-stage production system which is governed by the
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continuous-time base-stock policy. Diffusion models and deterministic fluid models have been pro-
posed in order to mitigate the analytical and computational complexity of performance evaluation
and optimal control. For example, Wein (1992) used a diffusion process to model a multi-product,
single-server MTS system, while Veatch (2002) discussed diffusion and fluid-flow models of serial
MTS systems. Note, however, that diffusion models require a heavy traffic condition in order to be
valid approximations (Wein 1992). In a similar vein, while deterministic fluid-flow models provide
valuable insights into the control rules of such systems, deterministic modeling may well result in
substantial numerical errors (Veatch 2002).

Simulation has been widely used to study the performances of complex production-inventory
systems under uncertainty. Glasserman and Tayur (1995) considered a class of production-inventory
systems under the so-called periodic-review, modified base-stock policy, and estimated its perfor-
mance metrics and IPA derivatives using simulation. While periodic-review policies evaluate system
performance at discrete review times, discrete-event simulation, in contrast, can track system per-
formance continuously, but this can be overly time consuming for large-scale systems, due to the
large number of events that need to be processed (e.g., arrivals and service completions). All in all,
most papers on stochastic production-inventory systems postulate a specific underlying probability
law, and focus on off-line control and optimization algorithms.

Recent work has sought to address these shortcomings in the context of fluid-flow queueing
systems, and especially, the stochastic fluid model (SFM) setting, where transactions carry fluid
workload, random discrete arrivals become random arrival rates and random discrete services be-
come random service rates. SFM-like settings represent an alternative (continuous or fluid-flow)
queueing paradigm, which differs from the traditional (discrete) queueing paradigm in the way
workload is transported in the system1. Both paradigms are set in a network of nodes, each of
which houses a server and a buffer, where network sources and sinks are viewed as exogenous nodes,
and all others as endogenous nodes. Transactions representing parcels of workload arrive at the
network from some source, traverse the network according to some itinerary, and then depart the
network at some sink. The two queueing paradigms differ, however, in the way workload moves
in the system. In the discrete queueing paradigm, transaction workload moves “abruptly” among
nodes following a service time, while in the continuous queueing paradigm, transaction workload
moves “gradually” (i.e., flows like fluid) for the duration of its service time.

A heuristic modeling rationale underlying SFM systems is the assumption that individual trans-
actions carry miniscule workload as compared to the entire transaction flow, so the effect of indi-
vidual transactions is infinitesimal and akin to “molecules” in a fluid flow. Furthermore, in many
cases, a transaction workload does move gradually from one node to another, rather than abruptly
(e.g., a conveyor belt carrying bulk material, loading and unloading a truck, train, etc.) In fact,
discrete queueing systems can be abstracted as “limiting cases” of continuous queueing systems,
where the flow rate is zero when a transaction is still, but at the moment of motion the flow rate
becomes momentarily infinite; in other words, the flow rate is akin to a Dirac function. Pursu-
ing this line of reasoning, the “Dirac pulses” of flow rates in a discrete queueing system can be
approximated by high flow rates of short duration in a continuous queueing system. Whichever
reasoning is used, the modeler can often choose to model a queueing system using either paradigm
on equal footing. Finally, we point out that ceteris paribus, SFM systems enjoy an important
advantage over their discrete counterparts: IPA derivatives in SFM setting are unbiased, while
their counterparts in discrete queueing systems are by and large biased (Heidelberger et al. 1988).
Thus, the local shape of sample paths in the fluid-flow paradigm confers technical advantages on

1For simplicity we address only open networks in this discussion.
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them. IPA derivatives, derived in SFM setting, can provide important information and insights for
their discrete counterparts, by applying derivative formulas obtained in SFM setting to queueing
systems that have been traditionally viewed as belonging to the discrete queueing paradigm. While
preliminary unpublished work by one of the authors suggests that this approach is viable, more
work is needed to establish its broad applicability.

Motivated by the considerations above, Wardi et al. (2002) derived IPA derivatives in SFM
setting; we henceforth refer to this approach as IPA-over-SFM. Wardi et al. (2002) considered
two performance metrics: loss volume and buffer-workload time average; each of these metrics was
differentiated with respect to buffer size, a parameter of the arrival rate process and a parameter of
the service rate process. The paper showed the IPA derivatives to be unbiased, easily computable
and nonparametric. Consequently, these derivatives can be computed in simulations, or in the
field, and the values can have potential applications to on-line control and stochastic optimization.
Paschalidis et al. (2004) treated multi-stage MTS production-inventory systems with backorders
in SFM setting. Assuming that inventory at each stage is controlled by a continuous-time base-
stock policy, the paper computed the right IPA derivatives of the time averaged inventory level and
service level with respect to base-stock levels, and used them to determine the optimal base-stock
levels at each stage. Zhao and Melamed (2004) applied the IPA-over-SFM approach to a class
of single-product, single-stage MTS systems with backorders, and derived IPA formulas for the
time averages of inventory level and backorder level with respect to the base-stock level, as well
as a parameter of the production rate process. It should be pointed out that Wardi et al. (2002),
Paschalidis et al. (2004) and Zhao and Melamed (2004) assume that systems start with certain
initial inventory states, and only consider cases where the left and right IPA derivatives coincide.
In contrast, Zhao and Melamed (2005) considered any initial inventory state and derived sided IPA
derivative formulas where needed, thereby providing the theoretical basis for IPA-based on-line
control of MTS systems with backorders.

The goal of this paper is to derive IPA derivatives for MTS systems with lost-sales, and to
show them to be unbiased. The paper makes the following contributions. First, we derive IPA
derivative formulas for two metrics, the inventory-level time average and lost-sales time average,
with respect to the base-stock level for all initial inventory states, including sided derivatives when
they differ. We are only aware of one paper [Wardi et al. (2002)] addressing IPA-over-SFM queues
with finite buffers, which can be used to model MTS systems with lost sales. But unlike the current
paper, Wardi et al. (2002) limits the initial condition to an empty buffer. Second, we derive IPA
derivative formulas for the aforementioned metrics with respect to a production rate parameter,
including sided derivatives when they differ. In contrast, Wardi et al. (2002) only considers cases
where the left and right IPA derivatives coincide (in fact, the left and right IPA derivatives may
differ). The computation of the general IPA derivatives for any initial inventory state and for
cases where the left and right IPA derivatives may differ requires major extensions of the current
results in the literature. As will become evident in the sequel, MTS systems with lost-sales are
also analytically more challenging than MTS systems with backorders, a fact that results in more
elaborate formulas.

The merit of our contribution stems from potential applications of IPA derivatives to on-line
control of MTS systems. Clearly, IPA-based on-line control applications mandate the computation
of IPA derivatives for all initial inventory states, as well as all sided derivatives when they differ,
since a control action can change system parameters at a variety of system states (which are then
considered as new initial states). Moreover, it obviously makes little or no sense to wait for the
system to return to selected inventory states for which IPA derivatives are known, as this could
suspend control actions over extended periods of time. To summarize, for IPA-based applications
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to be general and efficacious, it is necessary that the requisite IPA derivative formulas satisfy the
following requirements:

1. For usability, they should be comprehensive in the sense that they are valid for any initial
condition of the system. In addition, if a left-derivative does not coincide with its right-
derivative counterpart, then both should be exhibited.

2. For statistical accuracy, they should be unbiased.

3. For generality, they should be nonparametric in the sense that they are solely computable from
the sample path observed without making any distributional assumptions on the underlying
probability law.

4. To enable on-line applications, they should be fast to compute.

To this end, this paper derives all sided IPA derivatives for MTS systems with lost-sales for any
initial inventory state. It further shows these IPA derivatives to be unbiased, nonparametric, and
easy to compute, which facilitates on-line control applications.

Throughout the paper, we use the following notational conventions and terminology. The
indicator function of set A is denoted by 1A, and x+ = max{x, 0}. A function f(x) is said to
be locally differentiable at x if it is differentiable in a neighborhood of x; it is said to be locally
independent of x if is constant in a neighborhood of x.

The rest of the paper is organized as follows. Section 2 presents the production-inventory
models under study. Section 3 provides variational bounds for system metrics. Section 4 derives
IPA derivative formulas and shows them to be unbiased. Finally, Section 5 concludes the paper.

2 The Make-to-Stock Model With Lost Sales

Consider the traditional single-stage, single-product MTS system, consisting of a production facility
and an inventory facility. The two facilities interact: the latter sends back orders to the former,
while the former produces stock to replenish the latter. The production facility is comprised of
a queue that houses a production server (a single machine, a group of machines or a production
line), preceded by an infinite buffer that holds incoming production orders. We assume that the
production facility has an unlimited supply of raw material, so it never starves. The inventory
facility satisfies incoming demands on a first come first serve (FCFS) basis, and is controlled by a
continuous-time base-stock policy with some base-stock level S > 0 (the case S = 0 corresponds to
a just-in-time system and its treatment is a simple special case.) More specifically, the inventory
and production facilities are coupled, and operate in two modes as follows:

Normal operational mode. While the inventory level does not exceed S, the inventory facility
places the orders of incoming demands as discrete production jobs in the production facility’s
buffer according to some operational rule (to be detailed below). The production facility fills
these outstanding orders and replenishes the inventory facility back to its base-stock level,
but no higher. We refer to this operational mode as normal operation, because the system
strives to reach an inventory level S, and in so doing, it maintains an inventory level not
exceeding S.

Overage operational mode. While the inventory level exceeds S (this could happen, for exam-
ple, as a result of a control action that lowered S), the production facility buffer is empty,
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Figure 1: The Make-to-Stock production-inventory system with lost sales

so production is temporarily suspended until the inventory level reaches or crosses S from
above, at which point normal operation is resumed. We refer to this operational mode as
overage operation, because it allows the system to adapt to a lower base-stock level, S, aiming
to enter normal operation.

The demand process consists of an interarrival-time process of demands and their random
magnitude. Demands arrive at the inventory facility and are satisfied from inventory on hand (if
available). Otherwise, when an inventory shortage is encountered, the behavior of the MTS queue
is governed by the lost-sales rule as follows: The incoming demand is satisfied by the amount of
inventory on hand, and any shortage of inventory becomes a lost sale. Thus, the system’s overall
actions aim to move the inventory level to the base-stock level, S.

2.1 Mapping MTS Systems to SFM Versions

We next proceed to map the traditional discrete MTS system with lost sales into an SFM version,
as depicted in Figure 1. Level-related stochastic processes are mapped into fluid versions of their
traditional counterparts in a natural way, as follows:

Inventory level. The traditional jump process of the level of inventory on hand at the inventory
facility is mapped to a fluid-level counterpart, {I(t)}, where I(t) is the (fluid) volume of
inventory on-hand at time t.

Outstanding orders. The traditional jump process of the level of outstanding orders in the buffer
of the production facility is mapped to a fluid-level counterpart, {X(t)}, where X(t) is the
(fluid) volume of outstanding orders at time t.

Traffic-related stochastic processes in Figure 1 are mapped into fluid versions of their traditional
counterparts, as follows:

Arrival rate. The traditional arrival process of discrete demands at the inventory facility is
mapped to a fluid-flow stochastic process, {α(t)}, where α(t) is the rate of incoming demands
at time t.
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Production rate. The traditional service (production) process of discrete product at the produc-
tion facility is mapped to a fluid-flow stochastic process, {µ(t)}, where µ(t) is the production
rate at time t.

Loss rate. The traditional loss process of discrete sales at the inventory facility is mapped to a
fluid-flow stochastic process, {ζ(t)}, where ζ(t) is the (fluid) loss rate of sales at time t.

Outstanding order rate. The traditional arrival process of signals for placing discrete outstand-
ing orders at the production facility is mapped to a fluid-flow stochastic process, {λ(t)}, where
λ(t) is the rate of incoming outstanding orders at time t.

Replenishment rate. The traditional traffic process of discrete replenished product from the
production facility to the inventory facility is mapped to a fluid-flow stochastic process, {ρ(t)},
where ρ(t) is the traffic rate of product at time t.

We now proceed to exhibit the formal definitions of all fluid-model components of the MTS
system with lost sales.

During overage operation, the inventory process is governed by the one-side stochastic differen-
tial equation

d

dt+
I(t) = −α(t), (2.1)

and

ζ(t) = 0, (2.2)

X(t) = 0. (2.3)

During normal operation, the model satisfies the conservation relation,

X(t) + I(t) = S. (2.4)

The outstanding orders process is governed by the sided stochastic differential equation,

dX(t)
dt+

=

⎧⎪⎨
⎪⎩

0, X(t) = 0 and α(t) ≤ µ(t)
0, X(t) = S and α(t) ≥ µ(t)
α(t) − µ(t), otherwise

(2.5)

The lost-sales rate process is given by

ζ(t) = [α(t) − µ(t)] 1{I(t)=0,α(t)>µ(t)}, t ≥ 0. (2.6)

The arrival-rate process of outstanding orders is given by

λ(t) =

⎧⎪⎨
⎪⎩

0, if I(t) > S
µ(t), if I(t) = 0 and α(t) > µ(t)
α(t), otherwise

(2.7)

and the replenishment-rate process is given by

ρ(t) =

{
µ(t), if X(t) > 0
min{µ(t), λ(t)}, if X(t) = 0.

(2.8)
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2.2 Performance Metrics and Parameters

Let [0, T ] be a finite time interval, where T is pre-defined constant, determines the time period
during which system performances are evaluated before a control action regarding the inventory
policy and/or production rate is taken. We should not confuse T with the review period of a
periodic-review inventory policy.

In this paper, we will be interested in the following random variables, to be henceforth referred
to as performance random variables or simply metrics.

Inventory time average. The time average of the inventory on-hand (fluid volume) over the
interval [0, T ], given by

LI(T ) =
1
T

∫ T

0
I(t) dt. (2.9)

Lost-sales time average. The time average of fluid rate of lost sales over the interval [0, T ], given
by

Lζ(T ) =
1
T

∫ T

0
ζ(t) dt. (2.10)

Observe that the metrics LI(T ) and Lζ(T ) are random variables for each T .
Let θ ∈ Θ denotes a generic parameter of interest with a close and bounded domain Θ. We write

S(θ), µ(t, θ), LI(T, θ), Lζ(T, θ) and so on to explicitly display the dependence of a performance
random variable on its parameter of interest. Our objective is to derive formulas for the IPA

derivatives
d

dθ
LI(T, θ), and

d

dθ
Lζ(T, θ) in the SFM setting, using sample path analysis, and to

show them to be unbiased.
The parameters of interest in this section are listed below:

Base-stock level. The base-stock level of the inventory facility,

S(θ) = θ, θ ∈ Θ. (2.11)

Production rate parameter. A parameter of the production rate process, such that

d

dθ
µ(t, θ) = 1, t ∈ [0, T ], θ ∈ Θ, (2.12)

interpreted as a scaling parameter of the production rate.

2.3 Assumptions

The notion of sample path events pertains to a property of a time point along a sample path (not
to be confused with the ordinary notion of events as aggregates of sample paths); the distinction
can be discerned by context. Similarly to Wardi et al. (2002), we define two types of sample path
events:

Exogenous events. An exogenous event occurs either whenever a jump occurs in the sample path
of {α(t)} or {µ(t)}, or when the time horizon T , is reached.

Endogenous events. An endogenous event occurs whenever a time interval is inaugurated, in
which X(t) = 0 or X(t) = S.
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Throughout this paper, we assume the following mild regularity conditions (cf. Wardi et al.
(2002)).

Assumption 1

(a) The demand rate process, {α(t)}, and the production rate process, {µ(t)}, have right-continuous
sample paths that are piecewise-constant w.p.1.

(b) Each of the processes, {α(t)} and {µ(t)}, has a finite number of discontinuities in any finite
time interval w.p.1, and the time points at which the discontinuities occur are independent of
the parameters of interest.

(c) No multiple events occur simultaneously w.p.1. �

The following observations follow from Assumption 1.

Observation 1

1. W.p.1, there exists a finite integer N ≥ 0 and a sequence of (random) time points 0 = T0 <
T1 < · · · < TN < TN+1 = T , such that the process {α(t)−µ(t)} is constant over each interval
(Tn, Tn+1), n = 0, · · · , N , and each time point Tn, 1 ≤ n ≤ N , is a jump point of the process.

2. The process {α(t) − µ(t)} is constant over each time interval (Tn, Tn+1), n = 0, · · · , N .

Proof. See Observation 1 in Zhao and Melamed (2005). �

Finally, we shall be interested in pairs of systems, the original system (indexed by θ) and a
perturbed system (indexed by θ±∆θ), both starting at the same initial conditions. To simplify the
notation in the sequel, we shall also make the following assumption, without any loss of practical
generality.

Assumption 2 The initial inventory level does not depend on θ, namely, I(0, θ) = I(0) for all
θ ∈ Θ. �

3 Variational Bounds

In this section, we derive variational bounds for various parameterized stochastic processes and
performance metrics in the MTS model with lost sales. These results will be used in subsequent
sections to simplify the derivation of IPA derivatives and to establish their unbiasedness. The
variational bounds will be shown to hold with respect to the control parameters of interest at each
time point, starting from an arbitrary initial inventory level, I(0).

It follows from Eqs. (2.1), (2.4) and (2.5) that the time derivative of I(t) satisfies

dI(t)
dt+

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−α(t), if I(t) > S

0, if I(t) = S and α(t) ≤ µ(t)

0, if I(t) = 0 and α(t) ≥ µ(t)

µ(t) − α(t), otherwise.

(3.1)
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3.1 Variational Bounds With Respect to the Base-Stock Parameter

In this section, the IPA parameter of interest is S(θ) = θ for θ ∈ Θ. Let {I(t, θ)} be the inventory
level process in an MTS system with lost-sales, where θ ∈ Θ and I(0, θ) = I(0). Then, Eq. (3.1)
induces a (random) partition of the interval [0, T ], given by

R(θ) = {R1(θ),R2(θ),R3(θ),R4(θ)}, (3.2)

where each region, Rk(θ), 1 ≤ k ≤ 4, is defined as follows,

R1(θ) = {t ∈ [0, T ] : I(t, θ) = 0 and α(t) ≥ µ(t)},
R2(θ) = {t ∈ [0, T ] : [I(t, θ) = 0 and α(t) < µ(t)]

or [I(t, θ) = S(θ) and α(t) > µ(t)] or 0 < I(t, θ) < S(θ)},
R3(θ) = {t ∈ [0, T ] : I(t, θ) = S(θ) and α(t) ≤ µ(t)},
R4(θ) = {t ∈ [0, T ] : I(t, θ) > S(θ)}.

We first prove the variational bounds for the inventory level process, {I(t, θ)}.

Proposition 1 For an MTS system with the lost-sales rule, let θ1, θ2 ∈ Θ. Then,

0 ≤ |I(t, θ1) − I(t, θ2)| ≤ |θ1 − θ2|, t ∈ [0, T ]. (3.3)

Proof. Recall that by Assumption 2,

I(0, θ1) = I(0, θ2) = I(0). (3.4)

Clearly, Eqs. (3.4) and (3.1) imply the result trivially for θ1 = θ2. It remains to show the result
for the case θ1 �= θ2. Without loss of generality, we assume that θ1 < θ2, and show that

0 ≤ I(t, θ2) − I(t, θ1) ≤ θ2 − θ1, t ∈ [0, T ]. (3.5)

To this end, we first prove the lefthand side of inequality (3.5) by showing that whenever I(t, θ1) =

I(t, θ2) for any t ∈ [0, T ], one has
d

dt+
[I(t, θ2) − I(t, θ1)] ≥ 0.

An examination of Eq. (3.1) reveals that the equality I(t, θ1) = I(t, θ2) can take place only in
the following cases.

Case 1: t ∈ Rk(θ1)
⋂Rk(θ2) for some 1 ≤ k ≤ 4. In this case, we immediately have

d

dt+
[I(t, θ2)−

I(t, θ1)] = 0.

Case 2: t ∈ R3(θ1)
⋂R2(θ2). In this case, I(t, θ1) = I(t, θ2) = S(θ1) = θ1 and

d

dt+
[I(t, θ2) −

I(t, θ1)] = µ(t) − α(t) ≥ 0, where the inequality follows from the definition of R3(θ1).

Case 3: t ∈ R4(θ1)
⋂R2(θ2). In this case,

d

dt+
[I(t, θ2) − I(t, θ1)] = µ(t) ≥ 0 by the definition of

R2(θ2) and R4(θ1).

Case 4: t ∈ R4(θ1)
⋂R3(θ2). In this case,

d

dt+
[I(t, θ2) − I(t, θ1)] = α(t) ≥ 0 by the definition of

R3(θ2) and R4(θ1).
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The lefthand side of inequality (3.5) follows from Eq. (3.4) and by the continuity of the realizations
of the inventory level process.

To prove the righthand side of inequality (3.5), we examine the behavior of {I(t, θ2)− I(t, θ1)}
in the four regions of the partition (3.2). Informally, the proof characterizes {I(t, θ2)− I(t, θ1)} for
all pairs of regions in the partitions associated with each θ, such that I(t, θ1) is in one region and
I(t, θ2) is in the other. More formally, the characterization covers t in all intersections of the form
Ri(θ1)

⋂Rj(θ2), 1 ≤ i, j ≤ 4. Note that the intersections partition the interval [0, T ] and their
number is finite w.p.1 by Part (b) of Assumption 1. The proof proceeds in two steps. In the first
step, we consider the extremal open set (a, b) of any such intersection. We then show that if

I(a, θ2) − I(a, θ1) ≤ θ2 − θ1, (3.6)

then
I(t, θ2)− I(t, θ1) ≤ θ2 − θ1, a < t < b. (3.7)

By continuity of the inventory level process, the inequality (3.7) will then extend to the interval
[a, b]. In the second step, we order the intervals (ak, bk) contiguously, and prove the inequality (3.5)
throughout [0, T ], by a straightforward induction on k, where the induction basis holds by Eq.(3.4),
and the induction step is immediate from the contiguity of the ordered intersections.

The following observation reduces substantially the number of region-pair cases (intersections)
to be checked. There is no need to check for pairs of regions with the same subscript, i = j, since

in their intersection
d

dt+
[I(t, θ2) − I(t, θ1)] = 0 trivially, which implies that I(t, θ2) − I(t, θ1) is

constant in the intersection. It remains to check the following list of cases.

Case 1: t ∈ R1(θ1)
⋂R2(θ2). In this case,

d

dt+
[I(t, θ2) − I(t, θ1)] = µ(t) − α(t) ≤ 0, where the

inequality follows from the definition of R1(θ1). In view of (3.6), inequality (3.7) immediately
follows.

Case 2: t ∈ R1(θ1)
⋂R3(θ2). In this case,

d

dt+
[I(t, θ2) − I(t, θ1)] = 0.

Case 3: t ∈ R3(θ1)
⋂R2(θ2). In this case, I(t, θ2) ≤ θ2 and I(t, θ1) = θ1, which implies that

I(t, θ2)− I(t, θ1) ≤ θ2 − θ1.

Case 4: t ∈ R4(θ1)
⋂R2(θ2). In this case, I(t, θ2) ≤ θ2 and θ1 < I(t, θ1), which implies that

I(t, θ2)− I(t, θ1) ≤ θ2 − θ1.

Case 5: t ∈ R4(θ1)
⋂R3(θ2). In this case, I(t, θ2) = θ2 and θ1 < I(t, θ1), which implies that

I(t, θ2)− I(t, θ1) ≤ θ2 − θ1.

The proof is complete. �

We next derive variational bounds for the time average of lost sales. To this end, we define
K(T, θ) to be the number of extremal subintervals of [0, T ] in which I(t, θ) = 0.

Proposition 2 For an MTS system with the lost-sales rule, let θ1, θ2 ∈ Θ. Then,
∫ T

0
|ζ(t, θ1) − ζ(t, θ2)| dt ≤ max{K(T, θ1), K(T, θ2)}|θ1 − θ2|. (3.8)
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Proof. The case of θ1 = θ2 is trivial, so it remains to prove the case θ1 �= θ2, and assume θ1 < θ2

without loss of generality. We prove the following inequality,

0 ≤
∫ T

0
[ζ(t, θ1) − ζ(t, θ2)] dt ≤ K(T, θ1)[θ2 − θ1], (3.9)

which is stronger than the requisite result.
Since θ1 < θ2, the proof of Proposition 1 implies that I(t, θ1) ≤ I(t, θ2) for all t ∈ [0, T ].

Consequently, ζ(t, θ2) ≤ ζ(t, θ1) for all t ∈ [0, T ], which establishes the lefthand side of (3.9).
We next prove the righthand side of inequality (3.9). In view of the inequality I(t, θ1) ≤ I(t, θ2)

for all t ∈ [0, T ], it suffices to show that for any extremal subinterval [U, V ] of [0, T ] in which
I(t, θ1) = 0, one has

∫ t

U
[ζ(τ, θ1)− ζ(τ, θ2)] dτ ≤ I(U, θ2) − I(U, θ1), t ∈ [U, V ]. (3.10)

Define W ∈ [U, V ] to be the first time point at which I(t, θ2) = 0, if it exists; otherwise, de-
fine W = V . Since I(t, θ1) = I(t, θ2) = 0 for t ∈ [W, V ), it follows from Eq. (2.6) that∫ V

W
[ζ(τ, θ1) − ζ(τ, θ2)] dτ = 0, so it remains to consider the interval [U, W ). But for any t ∈ [U, W ),

ζ(t, θ2) = 0 and ζ(t, θ1) = α(t) − µ(t). Hence, for every t ∈ [U, W ),
∫ t

U
[ζ(τ, θ1) − ζ(τ, θ2)] dτ =

∫ t

U
[α(τ) − µ(τ)] dτ.

We conclude that for every t ∈ [U, W ),
∫ t

U
[α(τ)− µ(τ)] dτ = I(U, θ2) − I(t, θ2) ≤ I(U, θ2) − I(U, θ1) ≤ θ2 − θ1,

where the equality is due to the dynamics of Eq. (3.1), the first inequality follows from the relation
I(t, θ2) ≥ I(U, θ1) = 0, and the second inequality follows from (3.5). The result now follows
by applying inequality (3.10) to all extremal subintervals of the form [U, V ] and summing the
corresponding inequalities. �

3.2 Variational Bounds With Respect to a Production Rate Parameter

In this section, the IPA parameter of interest is a parameter, θ, of the production rate process,
{µ(t, θ)}, satisfying Eq. (2.12). Our results build upon prior results in Wardi and Melamed (2001),
which assume a special initial condition for the workload.

Observation 2 For an MTS system with the lost-sales rule, the stochastic differential equations
governing the outstanding orders process {X(t)} in normal operation, the loss-rate process, {ζ(t)},
and the replenishment rate process, {ρ(t)}, are identical to those governing the buffer workload,
overflow and outflow processes, respectively, in the SFM queuing system studied in Wardi et al.
(2001).

Proof. Follows from the fact that we can identify the demand arrival rate process, production
rate process, and base-stock level parameter, respectively, with the inflow rate process, service rate
process and buffer capacity parameter in Wardi and Melamed (2001). �
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For notational convenience, we define an auxiliary process, called the extended outstanding
orders process, {Y (t, θ)}, by

Y (t, θ) =

{
S − I(t, θ), if I(t, θ) > S (overage operation)

X(t, θ), if I(t, θ) ≤ S (normal operation)
(3.11)

Observe that Y (t) is negative during overage operation and non-negative during normal operation.
Furthermore, Eq. (2.4) implies the conservation relation,

I(t, θ) + Y (t, θ) = S, t ≥ 0, (3.12)

valid for each operational mode (overage and normal).

Proposition 3 For an MTS system with the lost-sales rule, let θ1, θ2 ∈ Θ. Then,

max{|Y (t, θ1) − Y (t, θ2)| : t ∈ [0, T ]} ≤ T |θ1 − θ2|
and ∫ T

0
|ζ(t, θ1) − ζ(t, θ2)| dt ≤ 2 T |θ1 − θ2|.

Proof. By Assumption 2 and Eq. (3.12), Y (0, θ1) = Y (0, θ2). In view of the fact that {Y (t, θ1)} and
{Y (t, θ2)} coincide during overage operation, it suffices to assume that the system starts in normal
operation, namely, Y (0, θ1) = Y (0, θ2) ≥ 0. The results follow immediately from Proposition 3.2
of Wardi and Melamed (2001), since the proof there is readily seen to hold for any initial state in
normal operation. �

Corollary 1 For an MTS system with the lost-sales rule, let θ1, θ2 ∈ Θ. Then,

|I(t, θ1) − I(t, θ2)| ≤ T |θ1 − θ2|, t ∈ [0, T ].

Proof. Eq. (3.12) and Proposition 3 imply that

|I(t, θ1)− I(t, θ2)| = |[S − Y (t, θ1)]− [S − Y (t, θ2)]| ≤ T |θ1 − θ2|.
�

4 IPA Derivatives

We are now in a position to derive IPA derivatives for various parameterized stochastic processes
and performance metrics in the MTS model subject to lost sales rule. We mention in passing that
such systems are analytically more challenging than MTS systems with backorders, because the
inventory state of the former has an extra boundary. More specifically, while the inventory state
of both systems is bounded from above by S, that of MTS systems with lost sales is also bounded
from below by 0.

Let (Qj(θ), Rj(θ)), j = 1, . . . , J(θ) be the ordered extremal subintervals of [0,∞), such that
I(t, θ) < S for all t ∈ (Qj, Rj), that is,the endpoints, Qj(θ) and Rj(θ), are obtained via inf and
sup functions, respectively. By convention, if any of these endpoints does not exist, then it is set
to ∞. Furthermore, we let Zj(θ) ∈ (Qj(θ), Rj(θ)) be the first time point in this interval at which
I(t, θ) = 0 if such a point exists; otherwise, let Zj(θ) = Rj(θ).
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Observation 3

Q1(θ) < R1(θ) < Q2(θ) < R2(θ) < . . . < QJ(θ)(θ) < RJ(θ)(θ). (4.1)

Proof. See Observation 3 in [19]. �

4.1 IPA Derivatives with Respect to the Base-Stock Level

This section treats IPA derivatives (including sided ones) for the inventory time average, LI(T, θ),
and the lost-sales time average, Lζ(T, θ), both with respect to the base-stock level, S, and exhibits
their formulas for any initial inventory state. We first prove a number of useful lemmas that simplify
the proofs of the main results later in this section. We then proceed to obtain the IPA derivatives
for LI(T, θ) by first obtaining those for the inventory process, {I(t, θ)}, following which we obtain
the IPA derivatives for Lζ(T, θ). Finally, we establish the unbiasedness of all the IPA derivatives
above.

Assumption 3

(a) S(θ) = θ, where θ ∈ Θ.

(b) The processes {α(t)} and {µ(t)} are independent of the parameter θ. �

The following lemma provides basic properties for the inventory level process.

Lemma 1

(a) For every j ≥ 1,
d

dθ
I(t, θ) = 1, t ∈ [Rj(θ), Zj+1(θ)).

(b) For every j ≥ 1,
d

dθ
I(t, θ) = 0, t ∈ (Zj(θ), Rj(θ)).

Proof. To prove part (a), note that each Rj(θ), j ≥ 1 is locally differentiable with respect to θ by
part (c) of Assumption 1. By Observation 3, Rj(θ) < Qj+1(θ), where Qj+1(θ) is a jump point of
{α(t) − µ(t)}, and therefore Qj+1(θ) is locally independent of θ. Consequently, I(t, θ) = S(θ) for
t ∈ (Rj(θ), Qj+1(θ)] and

I(t, θ) = S(θ) +
∫ t

Qj+1(θ)
[µ(t) − α(t)] dt, t ∈ (Qj+1(θ), Zj+1(θ)).

Part (a) now follows by differentiating I(t, θ) with respect to θ for t ∈ (Rj(θ), Zj+1(θ)].
To prove part (b), consider first the extremal time interval [Zj(θ), Z̃j(θ)] in which I(t, θ) = 0.

By part (c) of Assumption 1, Zj(θ) is locally differentiable with respect to θ, Z̃j(θ) is a jump point
of {α(t) − µ(t)} and Zj(θ) < Z̃j(θ). Therefore, Z̃j(θ) is locally independent of θ and I(t, θ) = 0

is locally independent of θ for t ∈ (Zj(θ), Z̃j(θ)]. Finally, note that by Eq. (3.1),
d

dt+
I(t, θ) is

independent of θ for t ∈ (Z̃j(θ), Rj(θ)). The proof is now complete. �

The following lemma provides basic properties for the time average of lost sales.
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Lemma 2 Let 0 ≤ u ≤ T be a time point, independent of θ.

(a) For every j = 1, . . . , J(θ), on the event {Zj(θ) = Rj(θ)},
d

dθ

∫ u

Qj(θ)
ζ(t, θ) dt = 0, for Qj(θ) < u ≤ Rj(θ) (4.2)

(b) For every j = 2, . . . , J(θ), on the event {Zj(θ) < Rj(θ)},
d

dθ

∫ u

Qj(θ)
ζ(t, θ) dt =

{
0, for Qj(θ) < u < Zj(θ)
−1, for Zj(θ) < u ≤ Rj(θ)

(4.3)

(c) For every j = 2, . . . , J(θ) and for u = Zj(θ), on the event {Zj(θ) < Rj(θ)},
d

dθ+

∫ u

Qj(θ)
ζ(t, θ) dt = 0 (4.4)

d

dθ−

∫ u

Qj(θ)
ζ(t, θ) dt = −1 (4.5)

Proof. To prove part (a), we show that the integral in Eq. (4.2) is locally independent of θ. To
see that, observe that

{Zj(θ) = Rj(θ)} = {I(t, θ) > 0, t ∈ [(Qj(θ), Rj(θ)]} ⊂ {ζ(t, θ) = 0, t ∈ [(Qj(θ), Rj(θ)]}
and each I(t, θ) is continuous in θ by Proposition 1. The result now follows for this part since the
integral clearly vanishes.

To prove part (b) for Qj(θ) < u < Zj(θ), the proof of part (a) is applicable. To prove part (b)
for Zj(θ) < u ≤ Rj(θ), note that Eq. (2.6) implies∫ u

Qj(θ)
ζ(t, θ) dt =

∫ u

Zj(θ)
[α(t) − µ(t)] 1{I(t,θ)=0,α(t)>µ(t)}dt on {Zj(θ) < Rj(θ)}. (4.6)

By part (c) of Assumption 1, Zj(θ) is locally differentiable with respect to θ. Furthermore, from
part (b) of Lemma 1, we conclude that {I(t, θ)} is locally independent of θ for t ∈ (Zj(θ), Rj(θ)].
It follows from Leibnitz’s rule that differentiating Eq. (4.6) with respect to θ yields

d

dθ

∫ u

Zj(θ)
ζ(t, θ) dt = −[α(Zj(θ)) − µ(Zj(θ))]

d

dθ
Zj(θ). (4.7)

To compute the right-hand side of Eq. (4.7), note first that the proof of part (a) of Lemma 1,
implies that Qj(θ) is locally independent of θ for j ≥ 2. Since∫ Zj(θ)

Qj(θ)
[α(t) − µ(t)] dt = I(Qj(θ)) − I(Zj(θ)) = S(θ),

differentiating this equation with respect to θ yields

[α(Zj(θ)) − µ(Zj(θ))]
d

dθ
Zj(θ) = 1.

The result now follows by substituting the above into Eq. (4.7).
Part (c) follows from Eq. (4.3), by noting that u = Zj(θ) satisfies Zj(θ−∆θ) < u < Zj(θ−∆θ).

�

Remark. The event {Zj(θ) = u} often has probability 0, so the brief proof of part (c) above
is included just for completeness.
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Lemma 3

(a) For every j = 1, . . . , J(θ),

d

dθ

∫ Rj(θ)

Qj(θ)
ζ(t, θ) dt = 0, on {Zj(θ) = Rj(θ)}. (4.8)

(b) For every j = 2, . . . , J(θ),

d

dθ

∫ Rj(θ)

Qj(θ)
ζ(t, θ) dt = −1 on {Zj(θ) < Rj(θ)}. (4.9)

Proof. Part (a) follows by an argument similar to that in the proof of part (a) in Lemma 2.
To prove part (b), note that by part (c) of Assumption 1, both Zj(θ) and Rj(θ) is locally dif-

ferentiable with respect to θ. Combining these facts with ζ(Rj(θ), θ) = 0, it follows from Leibnitz’s
rule that∫ Rj(θ)

Qj(θ)
ζ(t, θ) dt =

∫ Rj(θ)

Zj(θ)
[α(t) − µ(t)] 1{I(t,θ)=0,α(t)>µ(t)}dt on {Zj(θ) < Rj(θ)}. (4.10)

The rest of the proof is similar to that of part (b) in Lemma 2. �

We first derive the IPA derivatives for the inventory process {I(t, θ)}. In the next two lemmas
we make use of the hitting time, TS(θ), defined by

TS(θ) =

{
min{t ∈ [0,∞] : I(t, θ) = S(θ)}, if the minimum exists

∞, otherwise
(4.11)

Lemma 4 Consider an MTS system with the lost sales rule on the event {I(0) < S(θ)} (that is,
the system starts in normal operation with partial inventory). Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the event A(θ) = {I(0) < S(θ)}⋂{t < TS(θ)},

d

dθ
I(t, θ) = 0.

(b) On the events Bj(θ) = {I(0) < S(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1,

d

dθ
I(t, θ) = 1.

(c) On the events Cj(θ) = {I(0) < S(θ)}⋂{Zj(θ) < t < Rj(θ)}, j ≥ 2,

d

dθ
I(t, θ) = 0.

Proof. By Observation 3,

0 = Q1(θ) < TS(θ) = R1(θ) < Q2(θ) on {I(0) < S(θ)}, (4.12)

and this holds for all cases of this lemma.
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To prove part (a), note that by Eq. (3.1) and Assumption 2, the time derivative
d

dt+
I(t, θ) is

locally independent of θ on A(θ). Consequently,

I(t, θ) = I(0) +
∫ t

0

d

dτ+
I(τ, θ) dτ on A(θ)

is independent of θ on A(θ), which proves part (a).
Finally, part (b) follows immediately from part (a) of Lemma 1, while part (c) follows immedi-

ately from part (b) of Lemma 1. �

Lemma 5 Consider an MTS system with the lost-sales rule on the event {I(0) > S(θ)} (that is,
the system starts in overage operation). Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the event A(θ) = {I(0) > S(θ)}⋂{t < TS(θ)},

d

dθ
I(t, θ) = 0.

(b) On either of the events B1(θ) = {I(0) > S(θ)}⋂{TS(θ) < Q1(θ)}⋂{TS(θ) < t < Z1(θ)} or
B2,j(θ) = {I(0) > S(θ)}⋂{TS(θ) < Q1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1 or B3,j(θ) = {I(0) >

S(θ)}⋂{TS(θ) = Q1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1,

d

dθ
I(t, θ) = 1.

(c) On the events Cj(θ) = {I(0) > S(θ)}⋂{Zj < t < Rj(θ)}, j ≥ 1,

d

dθ
I(t, θ) = 0.

(d) On the event D(θ) = {I(0) > S(θ)}⋂{TS(θ) = Q1(θ)}⋂{TS(θ) < t < Z1(θ)},
d

dθ
I(t, θ) =

µ(Q1(θ))
α(Q1(θ))

.

Proof. To prove part (a), note that by Eq. (3.1) that
d

dt+
I(t, θ) = −α(t) on A(θ). Therefore,

I(t, θ) = I(0)−
∫ t

0
α(τ) dτ

is independent of θ on A(θ), whence the result follows.
To prove part (b) on the event B1(θ), note that by Observation 3,

TS(θ) < Q1(θ) < R1(θ) on B1(θ). (4.13)

Clearly, TS(θ) is locally differentiable with respect to θ. In view of Eq. (4.13), Q1(θ) corresponds
to a jump in {α(t) − µ(t)}, and part (b) on the event B1(θ) follows by a proof similar to that of
part (a) in Lemma 1. Part (b) on the events B2,j and B3,j(θ), j ≥ 1 follows immediately from part
(a) of Lemma 1.

Part (c) follows immediately from part (b) of Lemma 1.
To prove part (d), note that by Observation 3,

TS(θ) = Q1(θ) < R1(θ) < Q2(θ) on D(θ). (4.14)
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Furthermore, ∫ Q1(θ)

0
α(τ) dτ = I(0)− S(θ) = I(0)− θ, on D(θ).

Differentiating the above equation with respect to θ yields,

d

dθ
Q1(θ) =

−1
α(Q1(θ))

, on D(θ). (4.15)

next, write I(t, θ) = S(θ) +
∫ t

Q1(θ)
[µ(τ)− α(τ)] dτ on the event D(θ), and then differentiate it with

respect to θ, yielding the desired result

d

dθ
I(t, θ) = 1 − [µ(Q1(θ)) − α(Q1(θ))]

d

dθ
Q1(θ) =

µ(Q1(θ))
α(Q1(θ))

on D(θ), (4.16)

where the second equality is obtained by substituting Eq. (4.15), and noting the inequalities
α(Q1(θ)) > µ(Q1(θ)) ≥ 0 on the event {I(0) > S(θ)}⋂{Q1(θ) = TS(θ)}. �

On the event {I(0) = S(θ)}, the situation is more complex, because the left and right derivatives
of I(t, θ) with respect to θ do not coincide and must be computed separately. This event cannot
be excluded because it may happen in applications where inventory levels are discrete.

We first derive the right-derivatives,
d

dθ+
I(t, θ) by borrowing from Lemma 4 and making use

of the hitting time Tµ(θ), given by

Tµ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{t ∈ [0, Q1(θ)) : µ(t) > α(t)}, if the minimum exists on the event {Q1(θ) > 0}
R1(θ), if R1(θ) exists on the event

{Q1(θ) = 0}⋃
[{Q1(θ) > 0}⋂{α(t) = µ(t), t ∈ [0, Q1(θ))}]

∞, otherwise
(4.17)

In words, Tµ(θ) is a hitting time of {I(t, θ)}, which corresponds to the first time that the inventory
level changes in any perturbed process, {I(t, θ + ∆θ)} for any ∆θ > 0.

Lemma 6 Consider an MTS system with the lost-sales rule on the event {I(0) = S(θ)} (that is,
the system starts in normal operation with full inventory). Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the event A(θ) = {I(0) = S(θ)}⋂{t < Tµ(θ)},

d

dθ+
I(t, θ) = 0.

(b) On the events B1(θ) = {I(0) = S(θ)}⋂{Tµ(θ) < R1(θ)}
⋂{Tµ(θ) < t < Z1(θ)} or B2,j(θ) =

{I(0) = S(θ)}⋂{Tµ(θ) < R1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1 or B3,j(θ) = {I(0) = S(θ)}⋂{Tµ(θ) =
R1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1,

d

dθ+
I(t, θ) = 1.

(c) On the events C1,j(θ) = {I(0) = S(θ)}⋂{Tµ(θ) = R1(θ)}⋂{Zj(θ) < t < Rj(θ)}, j ≥ 2 or
C2,j(θ) = {I(0) = S(θ)}⋂{Tµ(θ) < R1(θ)}⋂{Zj(θ) < t < Rj(θ)}, j ≥ 1,

d

dθ+
I(t, θ) = 0.
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Proof. Consider a perturbed system with S(θ + ∆θ) = θ + ∆θ, where ∆θ > 0. Since I(0) =
S(θ) < S(θ + ∆θ), it follows that the perturbed system starts in normal operation. Denote ∆S =
S(θ + ∆θ) − S(θ). By Observation 3,

0 = Q1(θ + ∆θ) ≤ Tµ(θ) < R1(θ + ∆θ) < Q2(θ + ∆θ) on {I(0) = S(θ)}, (4.18)

and this holds for all cases of this lemma.
To prove part (a), note first that the event {Tµ(θ) = 0} can be precluded, since it implies

A(θ) = ∅. Otherwise, the definition of Tµ(θ) and Eq. (3.1) imply that
d

dt+
I(t, θ) =

d

dt+
I(t, θ+∆θ)

on A(θ). By Assumption 2, we conclude that I(t, θ + ∆θ) = I(t, θ) are independent of θ on A(θ),
and therefore, part (a) follows immediately.

To prove part (b), observe that part (b) of Assumption 1 implies that there exists ε > 0, such
that for any ∆θ ≤ ε,

R1(θ + ∆θ) = Tµ(θ) +
∆S

µ(Tµ(θ)) − α(Tµ(θ))
on {I(0) = S(θ)}, (4.19)

where the inequality µ(Tµ(θ))−α(Tµ(θ)) > 0 follows from the definition of Tµ(θ). We now proceed
with the proof on the event B1(θ), by considering two cases.
Case 1: On the event B1(θ)

⋂{Z1(θ) < R1(θ)}, it follows from the definition of Tµ(θ) and part
(c) of Assumption 1 that Tµ(θ) < Q1(θ) and Q1(θ) is a jump point of {α(θ) − µ(θ)}. Therefore,
Q2(θ + ∆θ) = Q1(θ) for sufficiently small ∆θ. Note that in this case, I(t, θ + ∆θ) = I(t, θ) on
{0 < t < Tµ(θ)}, and then it increases to S(θ+∆θ) and stays there until Q2(θ+∆θ). Furthermore,
over the interval [R1(θ +∆θ), Z1(θ)] and for sufficiently small ∆θ, both the original system and the
perturbed system operate in normal mode and are driven by identical dynamics. Consequently, the
difference process {I(t, θ +∆θ)− I(t, θ)} is constant and equals ∆θ, over that interval. By part (c)
of Assumption 1, we can choose sufficiently small ∆θ, such that

Z2(θ + ∆θ) = Z1(θ) +
∆S

α(Z1(θ)) − µ(Z1(θ))
on B1

⋂
{Z1(θ) < R1(θ)}, (4.20)

where the inequality α(Z1(θ)) − µ(Z1(θ)) > 0 follows from the definition of Z1(θ). But because in
this case, R1(θ + ∆θ) → Tµ(θ) and Z2(θ + ∆θ) → Z1(θ) as ∆θ → 0 by Eqs.(4.19) and (4.20), we

conclude that
d

dθ+
I(t, θ) = 1 on the event B1(θ)

⋂{Z1(θ) < R1(θ)}.
Case 2: on the event B1(θ)

⋂{Z1(θ) = R1(θ)} the proof is similar, except that Z2(θ + ∆θ) need
not be considered.

Finally, Part (b) on events B2,j(θ) and B3,j(θ), j ≥ 1 follows immediately from part (a) of
Lemma 1, and part (c) follows immediately from part (b) of Lemma 1. �

We next derive the left-derivatives,
d

dθ−
I(t, θ), by borrowing from Lemma 5, and making use

of the hitting time Tα, given by

Tα =

{
min{t ∈ [0, T ] : α(t) > 0}, if the minimum exists

∞, otherwise
(4.21)

Note that Tα is independent of θ.
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Lemma 7 Consider an MTS system with the lost-sales rule on the event {I(0) = S(θ)} (that is,
the system starts in normal operation with full inventory). Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the event A(θ) = {I(0) = S(θ)}⋂{t < Tα},

d

dθ−
I(t, θ) = 0.

(b) On either of the events B1(θ) = {I(0) = S(θ)}⋂{Tα < Q1(θ)}⋂{Tα < t < Z1(θ)} or B2,j(θ) =
{I(0) = S(θ)}⋂{Tα < Q1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1 or B3,j(θ) = {I(0) = S(θ)}⋂{Tα =
Q1(θ)}⋂{Rj(θ) < t < Zj+1(θ)}, j ≥ 1,

d

dθ−
I(t, θ) = 1.

(c) On the events Cj(θ) = {I(0) = S(θ)}⋂{Zj(θ) < t < Rj(θ)}, j ≥ 1,

d

dθ−
I(t, θ) = 0.

(d) On the event D(θ) = {I(0) = S(θ)}⋂{Tα = Q1(θ)}⋂{Q1(θ) < t < Z1(θ)},
d

dθ−
I(t, θ) =

µ(Tα)
α(Tα)

.

Proof. Consider a perturbed system with S(θ−∆θ) = θ−∆θ, where ∆θ > 0. Since I(0) = S(θ) >
S(θ−∆θ) by assumption, it follows that the perturbed system starts in overage operation. Denote
∆S = S(θ) − S(θ − ∆θ).

To prove part (a), note first that the event {Tα = 0} can be precluded, since it implies A(θ) = ∅.
Otherwise, on the event A(θ), the perturbed system is in overage operation with no demand arrivals,
so that I(t, θ − ∆θ) = I(0) = I(t, θ) on the event A(θ), and the result follows immediately.

To prove part (b), observe that part (b) of Assumption 1 implies that there exists ε > 0, such
that for any ∆θ ≤ ε,

TS(θ − ∆θ) = Tα +
∆S

α(Tα)
on {I(0) = S(θ)}, (4.22)

where the inequality α(Tα) > 0 follows from the definition of Tα. Note that Observation 3 implies

Tα < TS(θ − ∆θ) < Q1(θ) < R1(θ) on B1(θ). (4.23)

We now proceed with the proof on the event B1(θ), by considering two cases.
Case b.1: On the event B1(θ)

⋂{Z1(θ) < R1(θ)}, Eq. (4.23) implies that Q1(θ) is a jump point
of {α(t) − µ(t)}. It follows by a proof similar to that of part (a) in Lemma 1 that I(t, θ − ∆θ) =
I(t, θ)− ∆θ on the event {I(0) = S(θ)}⋂{Tα < Q1(θ)}⋂{TS(θ − ∆θ) < t < Z1(θ − ∆θ)}, where

Z1(θ − ∆θ) = Z1(θ) − ∆S

α(Z1(θ)) − µ(Z1(θ))
on B1(θ)

⋂
{Z1(θ) < R1(θ)}, (4.24)

and the inequality α(P1(θ)) − µ(Z1(θ)) > 0 follows from the definition of Z1(θ). To see that,
observe that {I(t, θ− ∆θ)} starts in overage mode and hits its base-stock level, S(θ − ∆θ) at time
TS(θ − ∆θ), and then stays there until time Q1(θ − ∆θ) = Q1(θ). But because TS(θ − ∆θ) → Tα
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and Z1(θ − ∆θ) → Z1(θ) on B1(θ)
⋂{Z1(θ) < R1(θ)} as ∆θ → 0 by Eqs.(4.22) and (4.24), we

conclude that
d

dθ−
I(t, θ) = 1 on this event.

Case b.2: On the event B1(θ)
⋂{Z1(θ) = R1(θ)}, the proof is similar, except that except that

Z1(θ − ∆θ) need not be considered.
Part (b) on the remaining events, B2,j and B3,j, j ≥ 1, follows immediately from part (a) of

Lemma 1, while part (c) follows immediately from part (b) of Lemma 1.
Finally, we prove part (d) by considering two separate cases. Here, the process {I(t, θ)} stays

at S(θ) until time Tα, at which point the arrival rate jumps, such that α(Tα) > µ(Tα).
Case d.1: Consider the event D(θ)

⋂{Z1(θ) < R1(θ)}. Then,

Q1(θ) = Tα < TS(θ − ∆θ) = Q1(θ − ∆θ) < R1(θ) on D(θ), (4.25)

where the first inequality is a consequence of Eq. (4.22), and both the second equality and second
inequality follow from part (b) of Assumption 1. It follows that

I(TS(θ − ∆θ), θ) = S(θ) − ∆S

α(Tα)
[α(Tα) − µ(Tα)] on D(θ). (4.26)

But over the interval [TS(θ−∆θ), Z1(θ−∆θ)], both the original system and the perturbed system
operate in normal mode and are driven by identical dynamics, given by Eq. (2.5). Therefore, over
this interval,

I(t, θ)− I(t, θ − ∆θ) =
∆S µ(Tα)

α(Tα)
on D(θ)

⋂
{Z1(θ) < R1(θ)} (4.27)

is constant, and by part (c) of Assumption 1, we can choose sufficiently small ∆θ, such that

Z1(θ − ∆θ) = Z1(θ) − ∆S µ(Tα)
α(Tα) [µ(Z1(θ)) − α(Z1(θ))]

on D(θ)
⋂
{Z1(θ) < R1(θ)}. (4.28)

Next, send ∆S = ∆θ → 0 in Eqs. (4.22) and (4.28), yielding respectively, TS(θ − ∆θ) → Tα and
Z1(θ − ∆θ) → Z1(θ). The requisite result on the event D(θ)

⋂{Z1(θ) < R1(θ)} now follows from
Eq. (4.27).
Case d.2: Consider the event D(θ)

⋂{Z1(θ) = R1(θ)}. The proof for this case is identical to the
proof of part (d) in Lemma 6 of Zhao and Melamed (2004). �

In the next proof we shall make use of horizon-dependent random indices, JS(T, θ), which
constitute restrictions of J(θ) to finite time horizons [0, T ] as follows,

JS(T, θ) =

{
max{j ≥ 1 : Rj(θ) ≤ T}, if it exists

0, otherwise.
(4.29)

We are now in a position to derive the IPA derivatives for the inventory time average, LI(T, θ).

Theorem 1 W.p.1, the IPA derivatives of the inventory time average with respect to the base-stock
level are given for all T > 0 and θ ∈ Θ as follows:
(a) On the event {I(0) < S(θ)},

d

dθ
LI(T, θ) =

JS (T,θ)∑
j=1

[min{Zj+1(θ), T} − Rj(θ)]. (4.30)
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(b) On the event {I(0) > S(θ)}⋂{TS(θ) < Q1(θ)},

d

dθ
LI(T, θ) = 1{TS(θ)<T }[min{Z1(θ), T} − TS(θ)] +

JS(T,θ)∑
j=1

[min{Zj+1(θ), T} − Rj(θ)]. (4.31)

(c) On the event {I(0) > S(θ)}⋂{TS(θ) = Q1(θ)},

d

dθ
LI(T, θ) = 1{TS(θ)<T }

µ(TS(θ))
α(TS(θ))

[min{Z1(θ), T}−TS(θ)]+
JS(T,θ)∑

j=1

[min{Zj+1(θ), T}−Rj(θ)]. (4.32)

(d) On the event {I(0) = S(θ)}⋂{Tµ(θ) = R1(θ)},

d

dθ+
LI(T, θ) =

JS(T,θ)∑
j=1

[min{Zj+1(θ), T} − Rj(θ)]. (4.33)

(e) On the event {I(0) = S(θ)}⋂{Tµ(θ) < R1(θ)},

d

dθ+
LI(T, θ) = 1{Tµ(θ)<T }[min{Z1(θ), T} − Tµ(θ)] +

JS(T,θ)∑
j=1

[min{Zj+1(θ), T} − Rj(θ)]. (4.34)

(f) On the event {I(0) = S(θ)}⋂{Tα < Q1(θ)},

d

dθ−
LI(T, θ) = 1{Tα<T }[min{Z1(θ), T} − Tα] +

JS(T,θ)∑
j=1

[min{Zj+1(θ), T} − Rj(θ)]. (4.35)

(g) On the event {I(0) = S(θ)}⋂{Tα = Q1(θ)},

d

dθ−
LI(T, θ) = 1{Tα<T }

µ(Tα)
α(Tα)

[min{Z1(θ), T} − Tα] +
JS (T,θ)∑

j=1

[min{Zj+1(θ), T}− Rj(θ)]. (4.36)

Proof. We show that Leibniz’s rule can be applied to Eq. (2.9) yielding

d

dθ±
LI(T, θ) =

1
T

d

dθ±

∫ T

0
I(t, θ) dt =

1
T

∫ T

0

d

dθ±
I(t, θ) dt. (4.37)

To this end, note that Assumption 1 and Lemma 4 - 7 ensure that w.p.1., the sided derivatives
d

dθ±
I(t, θ) exist and are finite over the interval [0, T ], except possibly for a finite number of time

points. Furthermore, since the end points of the integration interval of Eq. (4.37) are independent
of θ, it follows from Proposition 1 that the differentiation and the integration operations commute
there. The theorem now follows by substituting the values of the derivatives computed in Lemmas
4 - 7 into Eq. (4.37). �

We next derive the IPA derivatives for the lost sales time average, Lζ(T, θ). Let N[a,b](θ) be the
number of intervals of the form [Qj(θ), Rj(θ)], such that Zj(θ) < Rj(θ) and Zj(θ) ∈ [a, b].

Theorem 2 W.p.1, the IPA derivatives of the lost-sales time average with respect to the base-stock
level are given for all T > 0 and θ ∈ Θ as follows:
(a) On the event A(θ) = {I(0) < S(θ)},

d

dθ
Lζ(T, θ) = −N(TS(θ),T ](θ)

T
. (4.38)
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(b) On the event B(θ) = {I(0) > S(θ)}⋂{TS(θ) < Q1(θ)},
d

dθ
Lζ(T, θ) = −N(TS(θ),T ](θ)

T
. (4.39)

(c) On the event C(θ) = {I(0) > S(θ)}⋂{TS(θ) = Q1(θ)},
d

dθ
Lζ(T, θ) = − 1

T

[
1{Z1(θ)<R1(θ),Z1(θ)<T }

µ(TS(θ))
α(TS(θ))

+ N(R1(θ),T ](θ)
]
. (4.40)

(d) On the event D(θ) = {I(0) = S(θ)},
d

dθ+
Lζ(T, θ) = −N(Tµ(θ),T ](θ)

T
. (4.41)

(e) On the event E(θ) = {I(0) = S(θ)}⋂{Tα < Q1(θ)},
d

dθ−
Lζ(T, θ) = −N(Tα,T ](θ)

T
. (4.42)

(f) On the event F (θ) = {I(0) > S(θ)}⋂{Tα = Q1(θ)},
d

dθ−
Lζ(T, θ) = − 1

T

[
1{Z1(θ)<R1(θ),Z1(θ)<T }

µ(Tα)
α(Tα)

+ N(R1(θ),T ](θ)
]
. (4.43)

Proof. We prove each case separately.

Case (a):
d

dθ
Lζ(T, θ) can be written as

d

dθ
Lζ(T, θ) =

d

dθ

1
T

∫ min{TS(θ),T }

0
ζ(t, θ) dt +

d

dθ

1
T

∫ T

min{TS(θ),T }
ζ(t, θ) dt

=
d

dθ

1
T

∫ T

min{TS(θ),T }
ζ(t, θ) dt on A(θ). (4.44)

To see that, note that by Lemma 4, the process {I(t, θ)} is locally independent of θ on the

event A(θ)
⋂{t < TS(θ)}, and consequently,

∫ TS(θ)

0
ζ(t, θ) dt is also independent of θ on the same

event, in view of ζ(TS(θ), θ) = 0. We next compute the right hand side of Eq. (4.44) by parti-
tioning the interval [min{TS(θ), T}, T ] into subintervals of the form [Rj(θ), min{Qj+1(θ), T}] and
[Qj(θ), min{Rj(θ), T}], and computing the requisite derivative of the integral over each sub-interval.
Over intervals of the form [Rj(θ), min{Qj+1(θ), T}], the process {ζ(t, θ)} vanishes identically, and
consequently,

d

dθ

∫ min{Qj+1(θ),T }

Rj(θ)
ζ(t, θ) dt = 0.

For each non-empty interval of the form [Qj(θ), min{Rj(θ), T}], consider the corresponding Zj(θ).
It follows from Lemma 2 and 3 that

d

dθ

∫ min{Rj(θ),T }

Qj(θ)
ζ(t, θ) dt = 0 on {Zj(θ) = Rj(θ)}, (4.45)

and

d

dθ

∫ min{Rj(θ),T }

Qj(θ)
ζ(t, θ) dt =

{
−1 on {Zj(θ) < Rj(θ)}⋂{Zj(θ) < T}
0 on {Zj(θ) < Rj(θ)}⋂{T < Zj(θ)}. (4.46)
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Since the event {Zj(θ) = T} has probability 0, the result for this case now follows by applying Eq.
(4.45) or Eq. (4.46) to each non-empty interval of the form [Qj(θ), min{Rj(θ), T}].
Case (b): Note that by part (c) of Assumption 1, TS(θ) is locally differentiable with respect to θ,

and Q1(θ) is a jump point of {α(t)− µ(t)}. Furthermore,
d

dθ
Lζ(T, θ) can be written as

d

dθ
Lζ(T, θ) =

d

dθ

1
T

∫ min{TS(θ),T }

0
ζ(t, θ) dt +

d

dθ

1
T

∫ T

min{TS(θ),T }
ζ(t, θ) dt

=
d

dθ

1
T

∫ T

min{TS(θ),T }
ζ(t, θ) dt on B(θ). (4.47)

since the first integral on the right is identically zero in θ. The result for this case now follows by
a proof similar to that of Case (a).

Case (c): Note that
d

dθ
Lζ(T, θ) can be written as

d

dθ
Lζ(T, θ) =

d

dθ

1
T

∫ min{R1(θ),T )}

0
ζ(t, θ) dt +

d

dθ

1
T

∫ T

min{R1(θ),T )}
ζ(t, θ) dt on C(θ). (4.48)

We first show that the first integral on the right of Eq. (4.48) evaluates to

d

dθ

1
T

∫ min{R1(θ),T )}

0
ζ(t, θ) dt = − 1

T
1{Z1(θ)<R1(θ),Z1(θ)<T }

µ(TS(θ))
α(TS(θ))

on C(θ). (4.49)

To this end, we consider two events that partition C(θ). On the event C(θ)
⋂{Z1(θ) = R1(θ)}

(i.e., the inventory process does not hit zero in the interval [Q1(θ), R1(θ)]), part (a) of Lemma 2

and part (a) of Lemma 3 imply that
d

dθ

∫ min{R1(θ),T )}

0
ζ(t, θ) dt = 0. On the complementary event

C(θ)
⋂{Z1(θ) < R1(θ)} (i.e., the inventory process does hit zero in the interval [Q1(θ), R1(θ)]), a

proof similar to that of part (b) of Lemma 2 and and part (b) of Lemma 3 yields

d

dθ

∫ min{R1(θ),T }

Z1(θ)
ζ(t, θ) dt = −1{Z1(θ)<T } [α(Z1(θ))− µ(Z1(θ))]

d

dθ
Z1(θ). (4.50)

To compute the right-hand side above, we differentiate the relation

∫ Z1(θ)

Q1(θ)
[α(t) − µ(t)] dt = S(θ)

with respect to θ obtaining

[α(Z1(θ)) − µ(Z1(θ))]
d

dθ
Z1(θ) − [α(Q1(θ))− µ(Q1(θ))]

d

dθ
Q1(θ) = 1.

Substituting the above into Eq. (4.50), and then substituting Eq. (4.15) for
d

dθ
Q1(θ) results in

the expression

d

dθ

∫ min{R1(θ),T }

Z1(θ)
ζ(t, θ) dt = −1{Z1(θ)<T }

µ(Q1(θ))
α(Q1(θ))

on C(θ)
⋂

{Z1(θ) < R1(θ)},

which completes the computation of the requisite result in Eq. (4.49).
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Finally, to compute the second integral on the right-hand side of Eq. (4.48), we merely note
that the proof of part (a) implies

d

dθ

∫ T

min{R1(θ),T }
ζ(t, θ) dt = −N(R1(θ),T ](θ) on C(θ),

which completes the proof for this case.
Case (d): Consider a perturbed system with S(θ + ∆θ) = θ + ∆θ, where ∆θ > 0, and denote
∆S = S(θ + ∆θ) − S(θ). Since I(0) = S(θ) < S(θ + ∆θ) on D(θ), it follows that the perturbed
system starts in normal operation. We prove this case on three events that partition D(θ).

Consider the first event, given by D1(θ) = D(θ)
⋂{Tµ(θ) < R1(θ)}⋂{Z1(θ) < R1(θ)}. By

definition of Tµ(θ), one has 0 = Q1(θ + ∆θ) < Q1(θ) on D1(θ). From the proof of part (b) in
Lemma 6 it follows that

I(t, θ + ∆θ) = I(t, θ) + ∆θ on D1(θ)
⋂

{R1(θ + ∆θ) ≤ t ≤ Z1(θ)}, (4.51)

where R1(θ+∆θ) is given by in Eq. (4.19). Since over the interval [0, Z2(θ+∆θ)), where Z2(θ+∆θ)
is given by Eq. (4.20), the perturbed system has no lost sales while the original system has lost
sales only over the sub-interval [Z1(θ), Z2(θ + ∆θ)), we can write,

∫ Z2(θ+∆θ)

0
[ζ(t, θ + ∆θ) − ζ(t, θ)] dt =

∫ Z2(θ+∆θ)

Z1(θ)
[ζ(t, θ + ∆θ) − ζ(t, θ)] dt

= −
∫ Z2(θ+∆θ)

Z1(θ)
[α(t) − µ(t)] dt

= I(Z1(θ), θ) − I(Z1(θ), θ + ∆θ)
= −∆θ on D1(θ), (4.52)

where the next to last equality follows from the fact that the inventory difference at Z1(θ) is
consumed by the perturbed system in the interval [Z1(θ), Z2(θ)+∆θ), and the last equality follows
from Eq. (4.51). Next, decompose Lζ(T, θ) into two terms as in Eq. (4.48), and evaluate each term
on D1(θ). In view of Eq. (4.52), the first term evaluates to

d

dθ+

1
T

∫ min{R1(θ),T }

0
ζ(t, θ) dt = −1{Z1(θ)<T } on D1(θ).

The evaluation of the second term is similar to the evaluation of the second term in the decompo-
sition of Case (a), since the hitting time TS(θ) in Case (a) corresponds to the hitting time R1(θ)
in this case. Since the two evaluations result in identical expressions, this completes the proof of
this case on the event D1(θ).

Consider the second event, given by D2(θ) = D(θ)
⋂{Tµ(θ) < R1(θ)}⋂{Z1(θ) = R1(θ)}. The

proof on D2(θ) is identical to that of the proof on D1(θ), except that there are no lost sales in the
interval [0, R1(θ)].

Finally, consider the third event, given by D3(θ) = D(θ)
⋂{Tµ(θ) = R1(θ)}. The proof on D3(θ)

is essentially identical to that of Case (a) and leads to the same result. The proof of this case is
now complete.
Case (e): Consider a perturbed system with S(θ − ∆θ) = θ − ∆θ, where ∆θ > 0, and denote
∆S = S(θ) − S(θ − ∆θ). Since I(0) = S(θ) > S(θ − ∆θ) on E(θ), it follows that the perturbed
system starts in overage operation. We prove this case on two events that partition E(θ).
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Consider the first event, given by E1(θ) = E(θ)
⋂{Z1(θ) < R1(θ)}. By the proof of part (b) in

Lemma 7,

I(t, θ − ∆θ) = I(t, θ)− ∆θ on E1(θ)
⋂

{TS(θ − ∆θ) ≤ t ≤ Z1(θ − ∆θ)}, (4.53)

where TS(θ − ∆θ) is given in Eq. (4.22) and Z1(θ − ∆θ) is given in Eq. (4.24). Since over the
interval [0, Z1(θ)), the original system has no lost sales while the perturbed system has lost sales
only over the sub-interval [Z1(θ − ∆θ), Z1(θ)), we can write,

∫ Z1(θ)

0
[ζ(t, θ)− ζ(t, θ − ∆θ)] dt =

∫ Z1(θ)

Z1(θ−∆θ)
[ζ(t, θ) − ζ(t, θ − ∆θ)] dt

= −
∫ Z1(θ)

Z1(θ−∆θ)
[α(t) − µ(t)] dt

= I(Z1(θ − ∆θ), θ − ∆θ) − I(Z1(θ − ∆θ), θ)
= −∆θ on E1(θ), (4.54)

where the next to last equality follows from the fact that the inventory difference at Z1(θ − ∆θ) is
consumed by the original system in the interval [Z1(θ − ∆θ), Z1(θ)), and the last equality follows
from Eq. (4.53). Next, decompose Lζ(T, θ) into two terms as in Eq. (4.48), and evaluate each term
on E1(θ). In view of Eq. (4.54), the first term evaluates to

d

dθ−
1
T

∫ min{R1(θ),T }

0
ζ(t, θ) dt = −1{Z1(θ)<T } on E1(θ).

The evaluation of the second term is similar to the evaluation of the second term in the decompo-
sition of Case (a), since the hitting time TS(θ) in Case (a) corresponds to the hitting time R1(θ)
in this case. Since the two evaluations result in identical expressions, this completes the proof of
this case on the event E1(θ).

Consider the second event, given by E2(θ) = E(θ)
⋂{Z1(θ) = R1(θ)}. The proof on E2(θ) is

identical to that of the proof on E1(θ), except that there are no lost sales in the interval [0, R1(θ)].
The proof of this case is now complete.
Case (f): The setting of this case is the same as in Case (e). We prove this case on two events
that partition F (θ).

Consider the first event, given by F1(θ) = F (θ)
⋂{Z1(θ) < R1(θ)}. By part (d) in Lemma 7,

I(t, θ − ∆θ) = I(t, θ)− ∆θ
µ(Tα)
α(Tα)

on F1(θ)
⋂
{TS(θ − ∆θ) ≤ t ≤ Z1(θ − ∆θ)}, (4.55)

where TS(θ − ∆θ) is given in Eq. (4.22) and Z1(θ − ∆θ) is given in Eq. (4.28). Since over the
interval [0, Z1(θ)), the original system has no lost sales while the perturbed system has lost sales
only over the sub-interval [Z1(θ − ∆θ), Z1(θ)), we can write,

∫ Z1(θ)

0
[ζ(t, θ)− ζ(t, θ − ∆θ)] dt =

∫ Z1(θ)

Z1(θ−∆θ)
[ζ(t, θ) − ζ(t, θ − ∆θ)] dt

= −
∫ Z1(θ)

Z1(θ−∆θ)
[α(t) − µ(t)] dt

= I(Z1(θ − ∆θ), θ − ∆θ) − I(Z1(θ − ∆θ), θ)

= −∆θ
µ(Tα)
α(Tα)

, on F1(θ), (4.56)
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where the next to last equality follows from the fact that the inventory difference at Z1(θ − ∆θ) is
consumed by the original system in the interval [Z1(θ − ∆θ), Z1(θ)), and the last equality follows
from Eq. (4.55). Next, decompose Lζ(T, θ) into two terms as in Eq. (4.48), and evaluate each term
on F1(θ). In view of Eq. (4.56), the first term evaluates to

d

dθ−
1
T

∫ min{R1(θ),T }

0
ζ(t, θ) dt = −1{Z1(θ)<T }

µ(Tα)
α(Tα)

on F1(θ).

The evaluation of the second term is similar to the evaluation of the second term in the decompo-
sition of Case (a), since the hitting time TS(θ) in Case (a) corresponds to the hitting time R1(θ)
in this case. Since the two evaluations result in identical expressions, this completes the proof of
this case on the event F1(θ).

Consider the second event, given by F2(θ) = F (θ)
⋂{Z1(θ) = R1(θ)}. The proof on F2(θ) is

identical to that of the proof on F1(θ), except that there are no lost sales in the interval [0, R1(θ)].
The proof of this case is now complete. �

Finally, we show that the IPA derivatives of Theorem 1 and Theorem 2 are unbiased.

Theorem 3 Under Assumptions 1, 2 and 3, the sided IPA derivatives with respect to the base level

parameter,
d

dθ±
LI(T, θ) and

d

dθ±
Lζ(T, θ), are unbiased for all T > 0 and θ ∈ Θ.

Proof. Theorem 1 and Theorem 2 ensure that for all T > 0, Condition (a) of Fact 1 is satisfied
for both LI(T, θ) and Lζ(T, θ). Now, for any θ1, θ2 ∈ Θ,

|LI(T, θ1) − LI(T, θ2)| =

∣∣∣∣∣ 1
T

∫ T

0
[I(t, θ1)− I(t, θ2] dt

∣∣∣∣∣
≤ 1

T

∫ T

0
|I(t, θ1) − I(t, θ2)| dt ≤ |θ1 − θ2|, (4.57)

where the second inequality is a consequence of Proposition 1. Furthermore, by Proposition 2,

|Lζ(T, θ1)− Lζ(T, θ2)| ≤ max{K(θ1), K(θ2)}
T

|θ1 − θ2|, (4.58)

where E[K(θ)] is finite because K(θ) is finite w.p.1 for any finite time horizon [0, T ] and any θ ∈ Θ
by part (b) of Assumption 1.

Eqs. (4.57) and (4.58) establish that Condition (b) of Fact 1 holds for both LI(T, θ) and
Lζ(T, θ), thereby completing their proof of unbiasedness. �

4.2 IPA Derivatives with Respect to the Production Rate Parameter

This section treats sided IPA derivatives for the inventory time average, LI(T, θ), and the lost-sales
time average, Lζ(T, θ), both with respect to the production rate parameter, θ, in {µ(t, θ)}. We first
prove a number of useful lemmas on local differentiability and local independence, which simplify
the proofs of the main results later in this section. We then proceed to obtain the sided IPA
derivatives for LI(T, θ) by first obtaining those for the inventory process, {I(t, θ)}, following which
we obtain the sided IPA derivatives for Lζ(T, θ). Finally, we establish the stochastic ordering of
the sided derivatives for Lζ(T, θ), and the unbiasedness of all the IPA derivatives above.

Assumption 4
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(a) The production rate process {µ(t, θ)} is subject to Eq. (2.12).

(b) The process {α(t)} and the base-stock level, S, are independent of θ. �

We point out that unlike Wardi et al. (2002), Paschalidis et al. (2004) and Zhao and Melamed
(2004), Assumption 4 admits the possibility that sided IPA derivatives do not coincide. Indeed,
this could happen on events of the form {I(t, θ) = S}⋂{α(t) = µ(t, θ)} and {I(t, θ) = 0}⋂{α(t) =
µ(t, θ)}. These are generally not rare events, and in practice, their probabilities may well not
vanish, because I(t, θ) = S or I(t, θ) = 0 could hold for an extended period of time, and by part
(a) of Assumption 1, {α(t)} and {µ(t, θ)} have sample paths that are piecewise-constant w.p.1.

In this section, we may assume without loss of generality that 0 ≤ I(0) ≤ S, since the replen-
ishment process, {ρ(t)}, vanishes during overage operation, so that the value of θ has no effect on
the state of the system until it enters normal mode.

Define (U+
m(θ), V +

m (θ)), m = 1, . . . , M(θ), to be the ordered extremal subintervals of [0,∞), such
that either I(t, θ) = S for all t ∈ (U+

m, V +
m ) or I(t, θ) = 0 and α(t) > µ(t, θ) for all t ∈ (U+

m, V +
m ).

Define further (U−
n (θ), V −

n (θ)), n = 1, . . . , N (θ), to be the ordered extremal subintervals of [0,∞),
such that either I(t, θ) = 0 for all t ∈ (U−

n , V −
n ) or I(t, θ) = S and α(t) < µ(t, θ) for all t ∈ (U−

n , V −
n ).

By convention, if any of the endpoints above, U+
m(θ), V +

m (θ), U−
n (θ) or V −

n (θ), does not exist, then
it is set to ∞. For notational convenience, define V +

0 (θ) = V −
0 (θ) = 0.

Observation 4

U+
1 (θ) < V +

1 (θ) < U+
2 (θ) < V +

2 (θ) < · · · < U+
M (θ)(θ) < V +

M (θ)(θ) (4.59)

U−
1 (θ) < V −

1 (θ) < U−
2 (θ) < V −

2 (θ) < · · · < U−
N(θ)(θ) < V −

N(θ)(θ) (4.60)

Proof. To prove Inequality (4.59), we show the following inequalities

U+
m(θ) �= V +

m (θ), for all m ≥ 1 (4.61)
V +

m (θ) �= U+
m+1(θ), for all m ≥ 1 (4.62)

To prove inequality (4.61), we consider the following two cases.

Case 1: I(t, θ) = S on the event {U+
m(θ) < t < V +

m (θ)}. Inequality (4.61) holds due to part (c) of
Assumption 1, because U+

m(θ) is a point at which a time interval is inaugurated over which
I(t, θ) = S , while V +

m (θ) is a jump point of {α(t) − µ(t, θ)} from a non-positive value to a
positive value.

Case 2: I(t, θ) = 0 and α(t) > µ(t, θ) on the event {U+
m(θ) < t < V +

m (θ)}. Inequality (4.61) holds
due to part (c) of Assumption 1, because either U+

m(θ) is a point at which a time interval is
inaugurated over which I(t, θ) = 0 or U+

m(θ) is a jump point of {α(t) − µ(t, θ)} from zero to
a positive value, while V +

m (θ) is a jump point of {α(t) − µ(t, θ)} from a positive value to a
non-positive value.

To prove inequality (4.62), note that by the extremality of the intervals (U+
m(θ), V +

m (θ)) it is
impossible to have I(t, θ) = S on events {U+

m(θ) < t < V +
m (θ)} and {U+

m+1(θ) < t < V +
m+1(θ)}, or

I(t, θ) = 0 and α(t) > µ(t, θ) on the events {U+
m(θ) < t < V +

m (θ)} and {U+
m+1(θ) < t < V +

m+1(θ)}. It
remains to consider the cases where I(t, θ) = S on the event {U+

m(θ) < t < V +
m (θ)} and I(t, θ) = 0

and α(t) > µ(t, θ) on the event {U+
m+1(θ) < t < V +

m+1(θ)}, or I(t, θ) = 0 and α(t) > µ(t, θ) on the
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event {U+
m(θ) < t < V +

m (θ)} and I(t, θ) = S on the event {U+
m+1(θ) < t < V +

m+1(θ)}. Inequality
(4.62) now follows immediately by the continuity of {I(t, θ)} with respect to t.

Finally, the proof of (4.60) is analogous to that of (4.59). �

We shall need the following horizon-dependent random indices. The restriction of M(θ) to a
finite time horizon [0, T ] is

MI(T, θ) =

{
max{m ≥ 1 : V +

m (θ) ≤ T}, if it exists

0, otherwise
(4.63)

and the restriction of N (θ) to a finite time horizon [0, T ] is

NI(T, θ) =

{
max{n ≥ 1 : V −

n (θ) ≤ T}, if it exists

0, otherwise.
(4.64)

The next two lemmas provide properties of horizon dependent indices MI(T, θ) and NI(T, θ),
and the end points of the intervals (U+

m(θ), V +
m (θ)) and (U−

m(θ), V −
m (θ)).

Lemma 8

(a) MI(T, θ) is locally independent of θ in a right neighborhood of θ.

(b) For all m = 1, · · · , M(θ), U+
m(θ) is locally differentiable with respect to θ in a right neighborhood

of θ.

(c) For all m = 1, · · · , M(θ), V +
m (θ) is locally independent of θ in a right neighborhood of θ.

Proof. To prove part (a), note that if I(t, θ) = S on {U+
m(θ) < t < V +

m (θ)}, then it follows from
Corollary 1 that in a right neighborhood of θ, I(t, θ + ∆θ) = S on {U+

m(θ) < t < V +
m (θ)}. Consider

next the case where I(t, θ) = 0 and α(t) > µ(t, θ) on {U+
m(θ) < t < V +

m (θ)}. By Eq. (2.12), there
exists a right neighborhood of θ, such that α(t) > µ(t, θ + ∆θ). It follows from Corollary 1 and
Observation 4 that in a right neighborhood of θ, the interval (U+

m(θ), V +
m (θ)) remains non-null.

Suppose that part (a) does not hold. Then there must exist a τ ∈ [0, T ] such that I(τ, θ) = S and
I(t, θ) < S for any t in a neighborhood of τ . But this is precluded by part (c) of Assumption 1, so
(a) must hold.

To prove part (b), we consider four cases.

Case 1: I(t, θ) = S on {0 < U+
m(θ) < t < V +

m (θ)}. Follows immediately from Corollary 1.

Case 2: I(t, θ) = S on {0 = U+
1 (θ) < t < V +

1 (θ)}. Follows from the inequalities

α(0) ≤ µ(0, θ) < µ(0, θ + ∆θ) for any ∆θ > 0,

where the first inequality is a consequence of the definition of the intervals (U+
m(θ), V +

m (θ)),
and the second inequality is a consequence of Eq. (2.12).

Case 3: I(t, θ) = 0 and α(t) > µ(t, θ) on {0 < U+
m(θ) < t < V +

m (θ)}. Follows immediately from
Corollary 1.

Case 4: I(t, θ) = 0 and α(t) > µ(t, θ) on {0 = U+
1 (θ) < t < V +

1 (θ)}. Follows by the fact that
there exists a right neighborhood of θ such that α(t) > µ(t, θ + ∆θ).
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To prove part (c), we consider two cases.

Case 5: I(t, θ) = S on {U+
m(θ) < t < V +

m (θ)}. Note that the process {α(t) − µ(t, θ)} jumps at
V +

m (θ) from a non-positive value to a positive value. The result now follows, since by part
(b) of Assumption 1, such jumps are independent of θ.

Case 6: I(t, θ) = 0 and α(t) > µ(t, θ) on {U+
m(θ) < t < V +

m (θ)}. Note that the process {α(t) −
µ(t, θ)} jumps at V +

m (θ) from a positive value to a non-positive value. The rest of the argument
is identical to that of Case 5. �

Lemma 9

(a) NI(T, θ) is locally independent of θ in a left neighborhood of θ.

(b) For all n = 1, . . . , N (θ), U−
n (θ) is locally differentiable with respect to θ in a left neighborhood

of θ.

(c) For all n = 1, . . . , N (θ), V −
n (θ) is locally independent of θ in a left neighborhood of θ.

Proof. Analogous to the proof of Lemma 8. �

The next two lemmas compute the sided derivatives,
d

dθ±
I(t, θ).

Lemma 10 Consider an MTS system with the lost-sales rule. Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the events Am(θ) = {U+

m(θ) < t < V +
m (θ)}, m = 1, . . . , M(θ),

d

dθ+
I(t, θ) = 0.

(b) On the events Bm(θ) = {V +
m (θ) < t < U+

m+1(θ)}, m = 0, 1, . . . , M(θ) − 1,

d

dθ+
I(t, θ) = t − V +

m (θ).

Proof. To prove parts (a), we consider two cases.

Case 1: I(t, θ) = S on the event Am(θ) for given m. In this case, α(t) − µ(t, θ + ∆θ) < 0 on the
event Am(θ) for sufficiently small ∆θ > 0 by Eq. (2.12). It follows that I(t, θ) = S on Am(θ)
in a right neighborhood of θ, whence Part (a) holds.

Case 2: I(t, θ) = 0 and α(t) > µ(t, θ) on the event Am(θ) for given m. In this case, α(t)−µ(t, θ +
∆θ) > 0 on the event Am(θ) for sufficiently small ∆θ > 0 by Eq. (2.12). It follows that
I(t, θ) = 0 on Am(θ) in a right neighborhood of θ, whence Part (b) holds.

To prove part (b), write

I(t, θ) = I(V +
m (θ), θ) +

∫ t

V +
m (θ)

[µ(τ, θ)− α(τ)] dτ, on Bm(θ). (4.65)

Note that I(V +
m (θ), θ) = S or I(V +

m (θ), θ) = 0 in a right neighborhood of θ by part (c) of Lemma 8,
implying that I(V +

m (θ), θ) is locally independent of θ in a right neighborhood of θ. Consequently,
taking right derivatives with respect to θ in Eq. (4.65) yields

dI(t, θ)
dθ+

= −[µ(V +
m (θ), θ) − α(V +

m (θ))]
d

dθ+
V +

m (θ) +
∫ t

V +
m (θ)

dτ = t − V +
m (θ), on Bm(θ),
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where the first term on the right is due to part (c) of Lemma 8 and the second term is due to Eq.
(2.12). The proof is now complete. �

Lemma 11 Consider an MTS system with the lost-sales rule. Then, for any t ≥ 0 and θ ∈ Θ,
(a) On the events An(θ) = {U−

n (θ) < t < V −
n (θ)}, n = 1, . . . , N (θ),

d

dθ−
I(t, θ) = 0.

(b) On the events Bn(θ) = {V −
n (θ) < t < U−

n+1(θ)}, n = 0, 1, . . . , N (θ)− 1,

d

dθ−
I(t, θ) = t − V −

n (θ).

Proof. Analogous to the proof of Lemma 10. �

We are now in a position to derive the IPA derivatives for the inventory time average LI(T, θ).

Theorem 4 W.p.1, the IPA derivatives of the inventory time average with respect to the production
rate parameter are given for all T > 0 and θ ∈ Θ as follows:

d

dθ+
LI(T, θ) =

1
2T

MI (T,θ)∑
m=0

[min{U+
m+1(θ), T} − V +

m (θ)]2, (4.66)

d

dθ−
LI(T, θ) =

1
2T

NI (T,θ)∑
n=0

[min{U−
n+1(θ), T}− V −

n (θ)]2. (4.67)

Proof. We show that Leibniz’s rule can be applied to Eq. (2.9) yielding

d

dθ±
LI(T, θ) =

1
T

d

dθ±

∫ T

0
I(t, θ) dt =

1
T

∫ T

0

d

dθ±
I(t, θ) dt. (4.68)

To this end, note that Assumption 1 and Lemmas 10 and 11 ensure that w.p.1., the sided derivatives
d

dθ±
I(t, θ) exist and are finite over the interval [0, T ], except possibly for a finite number of time

points. Furthermore, since the end points of the integration interval of Eq. (4.68) are independent
of θ, it follows from Corollary 1 that the differentiation and integration operations commute there.
The theorem now follows by substituting the values of the derivatives computed in Lemmas 10 and
11 into Eq. (4.68). �

We next derive IPA derivatives for the lost-sales time average Lζ(T, θ). We shall need the
following horizon-dependent random indices.

Mζ(T, θ) =

{
max{m ≥ 1 : U+

m(θ) ≤ T}, if it exists

0, otherwise
(4.69)

Nζ(T, θ) =

{
max{n ≥ 1 : U−

n (θ) ≤ T}, if it exists

0, otherwise
(4.70)

Let Φ(T, θ) be the set of all indices m ∈ {1, 2, . . . , Mζ(T, θ)} such that I(t, θ) = 0 and α(t) > µ(t, θ)
on the event {U+

m(θ) < t < V +
m (θ)}. In a similar vein, let Ψ(T, θ) be the set of all indices n ∈

{1, 2, . . . , Nζ(T, θ)} such that I(t, θ) = 0 on the event {U−
n (θ) < t < V −

n (θ)}. It follows from the
proof of part (a) of Lemma 8 that the set Φ(T, θ) is locally independent of θ in a right neighborhood
of θ, and the set Ψ(T, θ) is locally independent of θ in a left neighborhood of θ.
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Theorem 5 W.p.1, the IPA derivatives of the lost-sales time average with respect to the production
rate parameter are given for all T > 0 and θ ∈ Θ as follows:

d

dθ+
Lζ(T, θ) = − 1

T

∑
m∈Φ(T,θ)

[min{V +
m (θ), T} − V +

m−1(θ)] (4.71)

d

dθ−
Lζ(T, θ) = − 1

T

∑
n∈Ψ(T,θ)

[min{V −
n (θ), T} − V −

n−1(θ)] (4.72)

Proof. To prove Eq. (4.71), note that

d

dθ+
Lζ(T, θ) =

1
T

∑
m∈Φ(T,θ)

d

dθ+

∫ min{V +
m (θ),T }

U+
m(θ)

ζ(t, θ) dt, (4.73)

because the set Φ(T, θ) is locally independent of θ in a right neighborhood of θ. For each m ∈
Φ(T, θ), part (c) of Lemma 8 and Eq. (2.12) imply

d

dθ+

∫ min{V +
m (θ),T }

U+
m(θ)

ζ(t, θ) dt = −[α(U+
m(θ)) − µ(U+

m(θ), θ)]
d

dθ+
U+

m(θ) −
∫ min{V +

m (θ),T }

U+
m(θ)

dt. (4.74)

We next compute the first term on the right-hand side of Eq. (4.74), and then take its right

derivative with respect to θ. To this end, we first compute the integrals
∫ U+

m(θ)

V +
m−1(θ)

[α(t) − µ(t, θ)] dt

for two cases of m ∈ Φ(T, θ).

Case 1: m = 1. On the event {U+
1 (θ) > 0},

∫ U+
1 (θ)

V +
0 (θ)

[α(t) − µ(t, θ)] dt = I(V +
0 (θ)) − I(U+

1 (θ)) = I(0),

since I(U+
1 (θ)) = 0. Furthermore, on the complementary event {U+

1 (θ) = 0},
∫ U+

1 (θ)

V +
0 (θ)

[α(t)− µ(t, θ)] dt = 0,

since V +
0 (θ) = U+

1 (θ) = 0.

Case 2: m > 1. On the event {I(t, θ) = S, U+
m−1(θ) < t < V +

m−1(θ)},
∫ U+

m(θ)

V +
m−1(θ)

[α(t)− µ(t, θ)] dt = I(V +
m−1(θ)) − I(U+

m(θ)) = S,

since I(V +
m−1(θ)) = S and I(U+

m(θ)) = 0. Furthermore, on the complementary event {I(t, θ) =
0 and α(t) > µ(t, θ), U+

m−1(θ) < t < V+
m−1(θ)}

∫ U+
m(θ)

V +
m−1(θ)

[α(t) − µ(t, θ)] dt = I(V +
m−1(θ))− I(U+

m(θ)) = 0,

since I(V +
m−1(θ)) = I(U+

m(θ)) = 0.
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It follows that in all cases above, the integral
∫ U+

m(θ)

V +
m−1(θ)

[α(t) − µ(t, θ)] dt equals either I(0) or 0 or

S, all of which are independent of θ. Taking the right derivative of this integral with respect to θ
yields

−[α(V +
m−1(θ))−µ(V +

m−1(θ), θ)]
d

dθ+
V +

m−1(θ)+[α(U+
m(θ))−µ(U+

m(θ), θ)]
d

dθ+
U+

m(θ)−
∫ U+

m(θ)

V +
m−1(θ)

dt = 0,

in view of Eq. (2.12). But the first term in the above equation varnishes by part (c) of Lemma 8,
resulting in

−[α(U+
m(θ)) − µ(U+

m(θ), θ)]
d

dθ+
U+

m(θ) = −
∫ U+

m(θ)

V +
m−1(θ)

dt.

Finally, substitute the above equation into Eq. (4.74), yielding

d

dθ+

∫ min{V +
m (θ),T }

U+
m(θ)

ζ(t, θ) dt = −
∫ min{V +

m (θ),T }

V +
m−1(θ)

dt = −[min{V +
m (θ), T} − V +

m−1(θ)].

Eq. (4.71) now follows by substituting the above equation into Eq. (4.73).
We next prove Eq. (4.72), using a symmetric proof. Note that

d

dθ−
Lζ(T, θ) =

1
T

∑
n∈Ψ(T,θ)

d

dθ−

∫ min{V −
n (θ),T }

U−
n (θ)

ζ(t, θ) dt, (4.75)

because the set Ψ(T, θ) is locally independent of θ in a left neighborhood of θ. For each n ∈ Ψ(T, θ),
part (c) of Lemma 9 and Eq. (2.12) imply

d

dθ−

∫ min{V −
n (θ),T }

U−
n (θ)

ζ(t, θ) dt = −[α(U−
n (θ)) − µ(U−

n (θ), θ)]
d

dθ−
U−

n (θ) −
∫ min{V −

n (θ),T }

U−
n (θ)

dt. (4.76)

We next compute the first term on the right-hand side of Eq. (4.76), and then take its left derivative

with respect to θ. To this end, we first compute the integrals
∫ U−

n (θ)

V −
n−1(θ)

[α(t)−µ(t, θ)] dt for two cases

of n ∈ Ψ(T, θ).

Case 3: n = 1. On the event {U−
1 (θ) > 0},

∫ U−
1 (θ)

V −
0 (θ)

[α(t)− µ(t, θ)] dt = I(V −
0 (θ)) − I(U−

1 (θ)) = I(0),

since I(U−
1 (θ)) = 0. Furthermore, on the complementary event {U−

1 (θ) = 0},
∫ U−

1 (θ)

V −
0 (θ)

[α(t) − µ(t, θ)] dt = 0,

since V −
0 (θ) = U−

1 (θ) = 0.

Case 4: n > 1. On the event {I(t, θ) = 0, U−
n−1(θ) < t < V −

n−1(θ)},
∫ U−

n (θ)

V −
n−1(θ)

[α(t) − µ(t, θ)] dt = I(V −
n−1(θ))− I(U−

n (θ)) = 0,
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since I(V −
n−1(θ)) = 0 and I(U−

n (θ)) = 0. Furthermore, on the complementary event , {I(t, θ) =
S and α(t) < µ(t, θ), U−

n−1(θ) < t < V−
n−1(θ)},

∫ U−
n (θ)

V −
n−1(θ)

[α(t)− µ(t, θ)] dt = I(V −
n−1(θ)) − I(U−

n (θ)) = S,

since I(V −
n−1(θ)) = S and I(U−

n (θ)) = 0.

It follows that in all cases above, the integral
∫ U−

n (θ)

V −
n−1(θ)

[α(t)−µ(t, θ)] dt equals either I(0) or 0 or S,

all of which are independent of θ. Taking the left derivative of this integral with respect to θ yields

−[α(V −
n−1(θ))−µ(V −

n−1(θ), θ)]
d

dθ−
V −

n−1(θ)+ [α(U−
n (θ))−µ(U−

n (θ), θ)]
d

dθ−
U−

n (θ) −
∫ U−

n (θ)

V −
n−1(θ)

dt = 0.

in view of Eq. (2.12). But the first term in the above equation varnishes by part (c) of Lemma 9,
resulting in

−[α(U−
n (θ)) − µ(U−

n (θ), θ)]
d

dθ−
U−

n (θ) = −
∫ U−

n (θ)

V −
n−1(θ)

dt.

Finally, substitute the above equation into Eq. (4.76), yielding

d

dθ−

∫ min{V −
n (θ),T }

U−
n (θ)

ζ(t, θ) dt = −
∫ min{V −

n (θ),T }

V −
n−1(θ)

dt = −[min{V −
n (θ), T} − V −

n−1(θ)].

Eq. (4.72) now follows by substituting the above equation into Eq. (4.75). �

Let ≤st denote stochastic ordering, and let =st denote stochastic equality [Shaked and Shan-
thikumar (1994)].

Corollary 2 In any MTS system with the lost-sales rule, the sided IPA derivatives satisfy the
inequality

d

dθ+
Lζ(T, θ) ≥st

d

dθ−
Lζ(T, θ), T > 0, θ ∈ Θ. (4.77)

Stochastic equality holds above, provided {I(t, θ) = S} ⊆ {α(t) < µ(t, θ)} for all t ∈ [0, T ] and
{I(t, θ) = 0} ⊆ {α(t) > µ(t, θ)} for all t ∈ [0, T ].

Proof. Consider the aforementioned sided IPA derivatives in the same probability space. For any
m ∈ Φ(T, θ), it follows from the definitions of Φ(T, θ) and Ψ(T, θ) that there exists n ∈ Ψ(T, θ) so
that (U+

m(θ), V +
m (θ)) ⊆ (U−

n (θ), V −
n (θ)), and

min{V +
m (θ), T} ≤ min{V −

n (θ), T}. (4.78)

Define the following random indices,

m∗(m) =

{
max{1 ≤ i < m : I(V +

i (θ), θ) = S}, if it exists

0, otherwise
(4.79)

n∗(n) =

{
max{1 ≤ j < n : I(V −

j (θ), θ) = S}, if it exists

0, otherwise
(4.80)
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In another word, m∗(m) is the largest index prior to m such that I(V +
m∗(m)(θ), θ) = S, while n∗(n)

is the largest index prior to n such that I(V −
n∗(n)(θ), θ) = S

By definition, for each event {I(t, θ) = S, U+
i (θ) < t < V +

i (θ)}, there exists 1 ≤ j ≤ Nζ(T, θ)
such that (U−

j (θ), V −
j (θ)) ⊆ (U+

i (θ), V +
i (θ)). In a similar vein, for each event {I(t, θ) = S, U−

j (θ) <

t < V −
j (θ)}, there exists 1 ≤ i ≤ Mζ(T, θ) such that (U−

j (θ), V −
j (θ)) ⊆ (U+

i (θ), V +
i (θ)). It follows

that (U−
n∗(n)(θ), V

−
n∗(n)(θ)) ⊆ (U+

m∗(m)(θ), V
+
m∗(m)(θ)) and

V +
m∗(m)(θ) ≥ V −

n∗(n)(θ). (4.81)

Combining this inequality with (4.78) yields,

min{V +
m , T} − V +

m∗(m)(θ) ≤ min{V −
n , T}− V −

n∗(n)(θ). (4.82)

Since (4.82) holds for every m ∈ Φ(T, θ), the requisite inequality (4.77) now follows from Theorem
5.

Finally, if I(t, θ) = S implies α(t) < µ(t, θ) and I(t, θ) = 0 implies α(t) > µ(t, θ), then
Mζ(T, θ) = Nζ(T, θ), and the sequence of intervals (U+

m(θ), V +
m (θ)), m = 1, . . . , Mζ(T, θ), is iden-

tical to the sequence of intervals (U−
n (θ), V −

n (θ)), n = 1, . . . , Nζ(T, θ). The requisite result now
follows immediately from Theorem 5. �

Finally, we show that the IPA derivatives of Theorem 4 and Theorem 5 are unbiased.

Theorem 6 Under Assumptions 1 and 4, the sided IPA derivatives with respect to the production

rate parameter,
d

dθ±
LI(T, θ) and

d

dθ±
Lζ(T, θ), are unbiased for all T > 0 and θ ∈ Θ.

Proof. Theorems 4 and 5 ensure that for all T > 0, Condition (a) of Fact 1 is satisfied for both
LI(T, θ) and Lζ(T, θ). For any θ1, θ2 ∈ Θ,

|LI(T, θ1) − LI(T, θ2)| =

∣∣∣∣∣ 1
T

∫ T

0
[I(t, θ1) − I(t, θ2] dt

∣∣∣∣∣
≤ 1

T

∫ T

0
|I(t, θ1)− I(t, θ2)| dt ≤ T |θ1 − θ2|, (4.83)

where the second inequality is a consequence of Corollary 1. Furthermore, by Proposition 3,

|Lζ(T, θ1) − Lζ(T, θ2)| ≤ 2|θ1 − θ2|. (4.84)

Eqs. (4.83) and (4.84) establish that Condition (b) of Fact 1 holds for both LI(T, θ) and Lζ(T, θ),
thereby completing their proof of unbiasedness. �

5 Discussion

This paper formulates Make-to-Stock (MTS) production-inventory systems with lost sales in stochas-
tic fluid model (SFM) setting, and derives IPA derivatives of time averages of inventory level and
lost sales with respect to the base-stock level and a production rate parameter. These IPA deriva-
tive formulas are comprehensive because they are derived for any initial inventory state and without
the assumption that the left and right derivatives must coincide. All IPA derivatives obtained are
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shown to be unbiased, nonparametric and fast to compute, which holds out the promise of broad
applications to on-line control of MTS production-inventory systems.

This paper, together with Zhao and Melamed (2005) can provide a theoretical basis for new
on-line control algorithms of production-inventory systems, including those where the underlying
stochastic processes (e.g., the demand and production capacity processes) may be subject to non-
stationary probability laws. One direction of future research is the extension of the current results
to more general supply networks with multiple facilties and multiple products, such as multi-stage
assembly systems. A case in point is Assemble-to-Order systems (such as those implemented by
Dell Computer Corporation), which face high demand volumes and are still required to provide high
service levels within tight committed service times (Perman 2001). An important characteristic of
such systems is that their demand patterns fluctuate considerably over time.

Clearly, a key issue is how to control production speeds at workstations and the base-stock levels
of component inventories so that the production-inventory system may quickly adapt to changing
demand without sacrificing service levels. While off-line algorithms can determine the optimal
control parameters for systems in steady state, IPA-based on-line control algorithms can sample
the system’s transient state and compute the requisite (nonparametric) transient IPA derivatives,
and then use them to quickly predict system metrics under hypothetically changed parameters of
interest. This will be the subject of future work to be reported elsewhere.
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